
Rtnetlink dump filtering in
 the kernel
 Roopa Prabhu

Agenda

● Introduction to kernel rtnetlink dumps
● Applications using rtnetlink dumps
● Scalability problems with rtnetlink dumps
● Better Dump filtering in the kernel

Introduction
● Rtnetlink is a Netlink protocol bus:

○ provides an UAPI to manage Linux kernel networking object
database

● Networking subsystems register handlers to manage kernel networking
objects (with family and message type)

● Rtnetlink dump handlers:
○ registered with the RTM_GET* message type
○ and invoked when the netlink reqest contains RTM_GET* message

with the NLM_F_DUMP flag

Applications: short lived

Mostly poll for kernel database changes:
● Connect to kernel
● Get kernel database dump
● Process messages
● Filter msgs
● Throw away all the data until next poll

interval

Applications: short lived example

Look for stale neighbour entries every 30s
$ip neigh show | grep ‘stale’

Applications: Long running
apps/daemons
Build userspace kernel object database
caches:
● Connect to kernel
● Get kernel database dump
● Listen to kernel netlink notifications to

keep the cache current
● App traverses the cached objects to do

work

Applications: Long running daemons
example
Userspace routing daemons:

● Push routes to kernel
● Build cache of what the kernel has
● React to notifications from the kernel

Current Problems:

● In most cases there is no way to query the kernel via
RTnetlink based UAPI on a few attributes

● short lived apps suffer:
○ Its a problem if the neigh database is 16k entries

with only a few stale entries
$ip neigh show | grep ‘stale’

example

the below iproute command execution requires requesting the
kernel for a full dump of all interface details in the system and
then looking for eth0 in users-space

ip addr show dev eth0

showing all bridge interfaces in the system requires iproute2 to get a
dump of details of all interfaces in the system and
filter bridge devices in user-space

ip link show type bridge

Existing Solutions for efficient
dumps:
1. BPF socket filters for netlink messages
2. Use netlink mmap to speed up large dumps
3. IFLA_EXT_MASK (u32) netlink attribute which

takes a few predefined mask values to filter dumps
4. Filter dump responses with attributes in the dump

request messages

This talk is about 4) and in the context of short lived
applications

Guidelines for dump request
messages:
● RTM_GET* messages with and without

NLM_F_DUMP flags must follow the same message
format as the RTM_NEW* message

(This is not a new requirement, but is required for
consistent dump filtering across subsystems)

kernel userspace

App1

RTM_GETNEIGH
, PF _BRIDGE
handler
(filter on
NDA_VLAN)

netlink
socket

Req: RTM_GETNEIGH (NLM_F_DUMP)

Req: RTM_GETNEIGH (NLM_F_DUMP,

with NDA_VLAN = 10)

Res: all fdb entries

Res: fdb entries in vlan 10 App2

Next few slides walks through a few such
messages

Link dumps: RTM_GETLINK

● Link dumps can be filtered on any fields in the incoming 'struct
ifinfomsg', like interface flags

● They can also be filtered based on the supported netlink attributes. e.
g.,
● IFLA_GROUP to filter interfaces belonging to a group
● IFLA_MASTER to filter interfaces with a specific master

interface
● IFLA_LINK to filter logical interfaces with this interface as the

link

example

ip link show type bridge
ip link show group test
ip link show master br0
ip link show link eth1

Fdb dumps: RTM_GETNEIGH

● Filter fdb dumps on any fields in the incoming 'struct ndmsg'
● Bridge and vxlan FDB dumps can be filtered on any of the below fields

in 'struct ndmsg':
● ndm_state – state of the fdb entry (NUD_PERMANENT,

NUD_REACHABLE and others)
● ndm_type - type of entry (static or local)
● ndm_ifindex – interface the fdb entry points to

Fdb dumps: RTM_GETNEIGH (Contd)
They can also be filtered based on any of the NDA_* netlink neigh attributes:
bridge fdb entries can be filtered based on the below attributes:

● NDA_DST - filter by dst
● NDA_LLADDR - filter by addr
● NDA_VLAN - filter by vlan
● NDA_MASTER - filter by master interface index

vxlan fdb entries can be filtered based on the below attributes:
● NDA_DST - filter by dst
● NDA_LLADDR - filter by addr
● NDA_PORT - filter by remote port
● NDA_VNI filter - by vni id for vxlan fdb
● NDA_IFINDEX - filter by remote port ifindex for vxlan fdb

example
iproute2 example showing bridge fdb dump
filtering

show fdb for bridge br0
bridge fdb show br br0

show fdb for bridge port eth0
bridge fdb show brport eth0

show static fdb entries
bridge fdb show static

show fdb entries with dst 172.16.20.103
bridge fdb show dst 172.16.20.103

show fdb entries with vlan 10
bridge fdb show vlan 10

show vxlan fdb entries with vni 100
bridge fdb show vni 100

show vxlan fdb entries with remote port 4783
bridge fdb show port 4783

Neigh table dumps: RTM_GETNEIGH

Neighbour table entries can be filtered by fields in 'struct ndmsg':

● ndm_state (NUD_PERMANENT, NUD_REACHABLE and others)
● ndb_type - neighbour entry type (static or local)
● ndm_ifindex – neighbour entry pointing to an interface

example

iproute2 examples filtering neigh dumps

show reachable neigh entries
ip neigh show nud reachable

show permanent neigh entries
ip neigh show nud permanent

show stale neigh entries
ip neigh show nud stale

show neigh entries for dev eth0
ip neigh show dev eth0

address dumps
Address table entries can be filtered on fields in 'struct ifaddrmsg':
● ifa_flags - filter addresses with address flags
● ifa_scope - filter address with given scope
● ifa_index - dump addresses belonging to an interface

They can also be filtered based on the below netlink attributes:
● IFA_LABEL - filter addresses with a given label
● IFLA_FLAGS - filter on flags like permanent, dynamic, secondary,

primary

Example

show addresses belonging to an interface
ip addr show dev eth0

Numbers: address filtering in kernel with 2000
interfaces

No filtering in kernel: 2000 interfaces with ip
addresses (orig)

time ip addr show dev eth0
3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP>
mtu 1500 qdisc pfifo_fast state UP group default qlen
1000
 link/ether 00:01:00:00:01:cc brd ff:ff:ff:ff:ff:ff
 inet 192.168.0.15/24 brd 192.168.0.255 scope global
eth0
 valid_lft forever preferred_lft forever

real 0m0.060s
user 0m0.040s
sys 0m0.020s

Filtering in kernel: 2000 interfaces with ip
addresses

time ip addr show dev eth0
3: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP>
mtu 1500 qdisc pfifo_fast state UP group default qlen
1000
 link/ether 00:01:00:00:01:cc brd ff:ff:ff:ff:ff:ff
 inet 192.168.0.15/24 brd 192.168.0.255 scope global
eth0
 valid_lft forever preferred_lft forever

real 0m0.028s
user 0m0.004s
sys 0m0.020s

Futures

● Post patches
● Explore other ways to filter dumps in the

kernel

