Securing Traffic Tunnelled over TCP or UDP

Sowmini Varadhan,
Oracle Corporation,
Redwood City, CA

sowmini.varadhan @oracle.com

Abstract

The Linux kernel today has a number of tunnelling mecha-
nisms for the cloud such as VXLAN, Geneve and GUE that
typically tunnel packets over UDP. In addition we also have
have socket types like PF_RDS [19] and the newly proposed
PF_KCM [6] socket which tunnel over TCP. All of these
technologies tunnel application and/or tenant payloads over a
Layer 4 protocol in the Network stack.

In all these cases, the TCP or UDP socket is a kernel socket
that is transparently created in the kernel. In many cases such
as RDS and KCM, the data that is tunneled comes from HTTP
or Database applications, and the tunneling solution needs to
satisfy security goals for integrity protection, privacy and au-
thentication.

In this paper we focus on the use-case of kernel-managed TCP
and UDP sockets and evaluate two approaches for securing the
application data sent or received on these sockets. One ap-
proach considered is by using TLS based keys for encrypting
and decrypting packets at the kernel socket layer. The second
approach is by using IPsec at the IP layer. Factors considered
for the evaluation are the network layers that are secured by
each approach, complexity of implementing each protocol in
the kernel, and impact on network performance.

Keywords
TLS, Kernel, KSSL, IPsec, RDS, Layer 3 tunneling, AAA

Introduction

Recent advances in network virtualization have resulted in
a number of tunnelling mechanisms for the Cloud, such as
VXLAN, Geneve, GUE etc. The Linux kernel implementa-
tion of these protocols is typically achieved by having tenants
in Virtual Machines send down frames to a virtual network
device (e.g., the NVE in [17] or the VTEP in [13]) that then
tunnels the frame over a TCP or UDP socket transparently
created in the kernel.

In addition to this model, there are other modes for tunnel-
ing application data over TCP, such as those used by Reliable
Datagram Sockets [19] or the Kernel Connection Multiplexor
[6]. In these cases, the application creates a datagram socket
with a new protocol family such as PF_RDS or PF_KCM, and
data sent or received on this socket is tunnelled over TCP. The
application is thus able to use datagram sockets semantics,

while the TCP based tunneling provides guaranteed, reliable,
ordered delivery.

In a Cloud topology where multiple tenant networks are
involved, and where packet paths can traverse long distances
over the Internet, the tenant and/or application payload needs
to be encrypted (with appropriate authentication) for privacy.
Typically this would be achieved by using TLS [2] or DTLS
[18] at the TCP/UDP socket layer from user-space.

However, trying to apply TLS/DTLS to application data
that is sent over kernel managed TCP and UDP sockets faces
some challenges.

e The TCP or UDP socket is transparently created in the ker-
nel and is not exposed to the application or tenant. As
a result the application or tenant cannot control many of
the parameters associated with TLS, or even whether TLS
needs to be applied to its data.

e When the application is using something other than a TCP
or UDP socket (e.g., RDS sockets with [19], or KCM sock-
ets [6]), unmodified versions of commonly used user-space
libraries for TLS such as gnutls or openssl, which
only operate on TCP or UDP sockets, cannot be directly
used by the application.

e The TLS control plane is complex, and there is no support
for TLS/DTLS on kernel managed sockets in the Linux
kernel.

In order to use TLS/DTLS with TCP/UDP sockets in the
kernel, it would be necessary to implement some variant of
the TLS protocol in the kernel itself. Attempts to implement
subsets of TLS have been made in BSD and Solaris, and we
evaluate the contents and conclusions from those attempts in
this paper.

TLS/DTLS encrypts, and provides privacy for, application
data, but it does not secure the TCP or UDP connection itself.
TCP connections, in particular, are vulnerable to a number of
attacks as documented in [23]. A multi-tenant Cloud/Cluster
environment that has the potential to traverse long Internet
paths needs to secure itself against such attacks.

IPsec [9], [14] provides an alternative solution for securing
both the application data and the TCP/IP connection itself.
IPsec provides encryption and authentication at the IP layer
and is integrated into the Linux kernel. IPsec can be used in
either the Transport Mode, where packet contents beyond the
IP header are encapsulated, or in Tunnel Mode, where the 1P

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

header itself is encapsulated and tunnelled as another IP or
UDP packet.

Each of these solutions impacts throughput and latency, in
different ways. This paper evaluates the applicability of each
of these solutions for kernel-managed TCP and UDP sock-
ets from the perspective of the type of security guarantees for
each solution, the implementation complexity and the result-
ing performance profile.

We start by investigating the possibility of using a security
solution based on TLS.

TLS based cryptography in the kernel

Transport Layer Security (TLS) [2] is a cryptographic proto-
col that sits on top of the Transport layer of the TCP/IP stack,
and allows the participating applications to encrypt their data
using a cipher and symmetric key that is negotiated as part of
the initial TLS Handshake. The Handshake is initiated by the
client which presents a list of cipher-suites to the server. The
server selects a cipher-suite from that list, and sends back its
public encryption key and a Certificate Authority (CA) to the
client. The client can then confirm the identity of the server.
It computes the Master Secret to be used for the exchange
and sends this key back to the server after encrypting it with
the server’s public key. After this point, all data between the
client and the server is encrypted using the session key which
is generated by applying a pseudo-random function (PRF)
and applying it to the Master Secret.

Clear (unencrypted packet):

IP header; Application
> TCP

Eth proto TCP h(?r data

header | 10,0.0.1 - 10.0.0.2

TLS encrypted packet

IP header;
Eth proto TCP
header | 10.0.0.1 — 10.0.0.2

Figure 1: Wire format of unencrypted and TLS encrypted
TCP/IP packet. Encrypted sections are shown in gray.

Figure 1 shows the format of a packet after encryption us-
ing TLS. An important point to note is that TLS (or DTLS)
only secures the application data. The TCP (or UDP) and IP
headers are sent in the clear, and are not protected by TLS (or
DTLS).

TLS is a complex protocol with several provisions for mid-
stream changes to the encryption parameters to provide robust
security in case of key compromise. For example, the TLS
protocol allows mid-session changes to the ciphering strate-
gies via the ChangeCipherSpec protocol option. The Change-

CipherSpec (CCS) message is sent by both the client and the
server to notify the peer that subsequent records will be pro-
tected under the newly negotiate CipherSpec and keys. Once
the CCS has been sent, the TLS specification mandates that
the new CipherSpec MUST be used. There are other similar
requirements in the TLS specification that contribute to the
complexity of TLS.

Due to its complexity, it would be preferable to avoid im-
porting the TLS state machine and control-plane into the ker-
nel, if that were possible.

We now describe efforts in BSD, Solaris and Linux to im-
plement TLS based cryptography in the kernel. Each imple-
mentation takes a different approach to handling the complex-
ity of TLS. The BSD and Linux proposals take the approach
of splitting TLS into a user-space control plane, and a kernel
data-plane, whereas the Solaris effort implements a stripped
down version of the TLS state machine in the kernel.

BSD sendfile() acceleration An attempt to improve
sendfile () throughput of encrypted data for the Netflix
OpenConnect Appliance (OCA) is described in [21]. The
OCA is a FreeBSD based web-server that handles and re-
sponds to incoming client-requests for objects stored on the
local disk. Responses from the server to the client may need
to be encrypted, and the objective in [21] is to try to acceler-
ate the transaction by doing a zero-copy data flow from disk
to socket by doing the encryption in the kernel. In order to
achieve this, [21] investigates a proposal whereby TLS cryp-
tographic parameters are negotiated in user-space and pushed
to the kernel. These parameters are then used for encryp-
tion/decryption on kernel sockets used in the sendfile ()
path for the FreeBSD-based OCA server.

The Netflix OCA acceleration separates the user-space
“control plane” which negotiates TLS session parameters,
and the kernel “data plane” that uses these encryption param-
eters for data-transforms. The TLS control messages are no
longer in-stream with the data-messages, which is a departure
from a basic assumption of the TLS protocol, thus new types
of asynchrony between the TLS state machine and the kernel
encryption state may now be encountered. One example de-
scribed in [21] is the case when encrypted messages arrive at
the receiver before the keys needed to decrypt those messages
are in place in the kernel. On the sender, the CCS transmis-
sion from the control-plane has to be coordinated with the us-
age of the new cipher for the next text message in the stream.
An interesting comment in [21] with respect to the CCS han-
dling in TLS is “when you consider [CCS processing] with
the fact that messages in the TCP stream may arrive out of
order, adding TLS for both sending and receiving adds a lot
of complexity to the kernel”.

The scope of the Netflix/OCA investigation is limited to the
evaluation of the performance acceleration for an encrypted
sendfile. As a result, [21] is able to restrict itself to a
subset of the client-side state-machine of the TLS protocol
that avoids many of the more complex protocol features such
as re-keying.

The Netflix/OCA investigation finds that the actual per-
formance improvement from using the simplified BSD ker-
nel implementation of client-side TLS to encrypt data for

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

sendfile () is only slightly better than the baseline solu-
tion of doing the TLS encryption in user-space. The actual
bottlenecks that limit performance on BSD come from ex-
tra bcopy’s of the data being encrypted, and other factors
such as context switching overhead resulting in loss of float-
ing point state, and general system workload.

Even if the performance inhibiting factors were mitigated,
the proposal in [21] does not constitute a complete secu-
rity solution for the problem of providing AAA for kernel-
managed TCP and UDP sockets such as those used by RDS,
KCM and VXLAN. All of the asynchronicity issues arising
from the split-TLS model would need to be resolved for both
the sender and the receiver.

Kernel SSL proxy for Solaris An alternative “Kernel SSL”
was attempted in the Solaris Operating System as part of the
Kernel Secure Sockets Library (KSSL) feature [11]. The goal
behind KSSL was to provide an in-kernel SSL proxy to accel-
erate web-server performance. In order to achieve this goal,
Solaris implemented a simplified version of the server-side of
the TLS state machine in the kernel.

As with the Netflix sendfile () study, the primary goal
was to achieve improved performance for a specific micro-
benchmark, rather than to provide a generic kernel infrastruc-
ture for TLS encryption of TCP payloads. One of the opti-
mizing assumptions made by KSSL was to implement sup-
port for a small subset of cipher-suites in the KSSL TLS state
machine. The subset was selected based on cipher-suites that
were commonly encountered in web-server transactions at the
time. Client requests for cipher-suites outside this subset, and
other TLS features such as Mutual Authentication, would be
punted to, and handled in, user-space.

While KSSL provided better performance for the specific
SPECweb99 benchmark and platforms targeted at the time
of its inception, its design and simplifying assumptions made
it an easy candidate for obsoletion. The slight performance
benefit gained by doing in-kernel SSL (and thus optimizing
memory access) was quickly obsoleted when alternative solu-
tions such as stunnel using AES-NI from user-space were
able to offer competitive performance with better flexibility
and support for a richer set of cryptographic algorithms. So-
laris KSSL is EOF’ed in Solaris 12.

Linux KTLS proposal A proposal to implement TLS for
kernel sockets is presented in [12]. This proposal is a hybrid
of the BSD and Solaris approaches. It splits the TLS protocol
into a user-space control plane that negotiates TLS parame-
ters, and a kernel data-plane that does encryption/decryption
with those parameters. Only the AES-NI crypto algorithms
would be handled in the kernel, all other cipher-suite requests
would be punted to user-space. The proposal does not clearly
specify how CCS messages would be correctly handled in
this split model. Additional deployment feedback and per-
formance numbers are pending for this proposal.

Evaluation of kernel TLS implementations The Linux
and BSD proposals split TLS processing into a control-plane
and a data-plane, which is not what the TLS protocol in-
tended. This split can give rise to various types of asynchrony
where control and data plane messages arrive in different per-

mutations, with the potential of inter-operability issues be-
tween different TLS implementations, and the risk of TLS
specification violations.

For the BSD and Solaris case-studies, the primary moti-
vation was to investigate performance improvements for a
micro-benchmark, rather than to provide a complete security
solution for TLS in the kernel.

In both Solaris and BSD, the complexity of the TLS con-
trol plane necessitated the need for simplifying assumptions.
Each implementation reports some performance improve-
ment to be gained by moving TLS into the kernel for the spe-
cific scope of its study, but that performance improvement is
achieved by implementing a subset of the TLS protocol itself,
with the assumption that there would be a fall-back mecha-
nism to handle other aspects of TLS that are not covered by
the optimization.

TLS/DTLS provides its security guarantees from the
socket layer, atop the TCP/UDP layers of the Networking
stack. One benefit in being able to do this from a kernel-
managed TCP/UDP socket would be that the kernel socket
would obtain the same performance profile from the underly-
ing stack infrastructure as a user-space TCP or UDP socket
that uses TLS or DTLS today.

However TLS/DTLS does not protect the TCP/UDP con-
nection itself. Privacy, integrity protection and authentication
for the L4 protocol is critical for some encapsulation proto-
cols like RDS, where attacks to the TCP layer can jeopardize
HA requirements for the Cluster. For example any of the at-
tacks described in [23] would result in loss of RDS message
reassembly state, and could trigger a reconnect and message
retransmit storm.

Problems with the split-TLS approach The Netflix/BSD
study recognizes that the separation of the TLS control-plane
from the data-plane opens up new possibilities for asynchrony
between the two planes and makes many simplifying assump-
tions to obtain its published results. While these assumptions
may be valid for the scope of the proposed performance in-
vestigation in [21], these points of asynchrony between the
control- and data-planes would have to be resolved to provide
a complete security solution for the problem of securing traf-
fic being tunnelled over kernel-managed TCP or UDP sockets
in a multi-tenant Cloud/Cluster.

None of the three implementations addresses the addi-
tional complexity of High Availability and Service Migra-
tion/Failover that is a critical feature for Cloud and Cluster
deployments where kernel managed TCP and UDP sockets
are used. In the case of PF_RDS, a kernel TCP socket may
receive a TCP RST for a number of reasons, such as ad-
dress/service failover, module/node restart, or other errors at
the peering node. It is possible to have a man-in-the-middle
TCP attack such as a spoofed RST on either the control- or
the data-plane TCP socket. In the case of RDS, the kernel
TCP socket tracks liveness of its peer, and will attempt to re-
connect to any new incarnation using parameters specified by
the protocol. With a split-TLS model, this would imply that
the data-plane has reconnected, but it may not always also be
associated with a corresponding re-establishment of the TLS
control plane. In general, reconnect at the data-plane should

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

be accompanied by a re-authentication and cryptographic re-
negotiation for the new connection, which requires more co-
ordination and kernel-user upcalls in the split-TLS model.

Authentication, privacy and integrity protection for L3 and
L4 layers is provided by the IPsec suite of security protocols,
which is implemented with an encrypting data-plane in the
kernel that addresses all of the asynchronicity issues men-
tioned above. In the next section, we examine the feasibility
of using IPsec to solve the security requirement for protocols
that tunnel over TCP/UDP in the kernel.

IPsec

IP Security (IPsec) is a suite of security protocols that op-
erates at the IP layer (Layer 3 of the network stack) and
defines protocols for key negotiation, authentication and en-
cryption. Authentication is provided by the optional addition
of an Authentication Header defined RFC 4302 [8], and end-
to-end payload encryption and decryption may be achieved
by adding the ESP header RFC 4303 [9]. When used in com-
bination with the Internet Key Exchange Protocol (IKE [5]),
the Security Associations and Security Policies can be man-
aged in a number of flexible ways through existing user space
application.

IPsec transport-mode encaps (ESP only)

Eth IP header; ESP header #4) ESP trailer
proto ESP SPL seq# 475 proto TCP
header 100,01 — 100,02/ 5 __inatsl

IPsec tunnel mode. The outer src/dst are determined by VPN config.

Bt 22 P ESP header @ Bl
header; 00 %//////// i
hdt| proto ESp | SPL seq# 7//% . ///%/;4///’ /) Proto (4)
/5255151434740 7, IP-in-1P
osrc — odst %7

Figure 2: Wire format of a packet encrypted in IPsec trans-
port and tunnel modes. Encrypted sections are shown in gray.
When a VPN gateway is not used (typical in Cloud/cluster
topologies), the outer IP source and destination addresses will
be identical to the inner IP addresses

IPsec may be used in one of two modes:

e the “transport mode”, where the IP payload is encrypted
and/or authenticated without impacting the L3 routing in-
formation, or,

e “tunnel mode”, where IP packet (header and payload) is it-
self encrypted/authenticated, and encapsulated into a new
IP packet that is tunneled IPsec in the tunnel mode is typi-
cally used to create Virtual Private Networks (VPN).

Figure 2 shows the format of the encrypted packet for each of
these two modes.

In the case of Cloud/NVO3 mechanisms, as well as Clus-
tered database/server environments such as those that use
RDS-TCP, the routing information at L3 for the packet is de-
termined by external entities such as Cloud Controllers for
the CLOS network, or by the Cluster topology for RDS. Al-
though IPsec in tunnel mode can be used to secure the IP
header itself, the use-case for Cloud/Cluster topologies is for
securing host-host connections and a VPN gateway is not
typically involved. IPsec transport mode, meets the antici-
pated security expectations of these use-cases by protecting
the TCP or UDP header as well as payload.

IPsec is tightly integrated with the Linux TCP/IP stack.
The benefit of the tight integration is that there is full and
mature support for all parts of the IPsec in the control plane.
The integration with IKEv2 provides flexibility for various
key distribution modes. The maturity of IPsec architecture
implies that the separation of the IKE control from the data-
plane is well-understood. IKE negotiated parameters ap-
ply smoothly across all socket connects and re-connects, so
that HA and failover are seamlessly handled. Thus IPsec
would provide all the security assurances needed for kernel-
managed TCP and UDP sockets.

IPsec meets all the security requirements of kernel
TCP/UDP sockets, but we need to ensure that IPsec usage
does not add unreasonable performance overhead. Applica-
tion of cryptographic transforms will add some unavoidable
latency to packet processing for any security solution. How-
ever, in addition to this cost, since IPsec modifies network
stack headers, there is a risk that the performance profile with
IPsec enabled may diverge significantly from the kernel fast-
path performance profile. Any such divergence needs to be
understood and minimized.

Three significant features available in the Linux network
stack that contribute to performance today are

1. hardware offload features such as TSO
2. receive side flow hashing
3. software offload features such as GSO and GRO

We shall now briefly describe each of these features in de-
tail, in order to understand their interaction with IPsec.

Hardware offload

In order to increase outbound throughput while also reducing
CPU overhead, the TCP/IP stack leverages from NIC support
for TCP Segmentation Offload (TSO) when it is available.
TSO works by sending down large buffers to the NIC, and
allows the hardware to split these buffers into TCP segments
that are then sent on the wire.

IPsec transforms operate on the TCP header, thus IPsec
processing must be applied after the segmentation operation.
In order to offload this operation to the hardware, the net-
work stack needs to convey the transform parameters (SA,
keys etc) to the NIC, i.e., both TSO and IPsec offload would
have to be enabled. The Linux stack today does not support
IPsec offload, thus the insertion of the ESP header results in
an implicit disabling of segmentation offload.

Note that this constraint also applies to other forms of
TCP/IP header protection, including TCP-MDS5 [3] and TCP-
AO [22]

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

Many of the commonly deployed 10GbE NICs from Intel
(Niantic, Twinville and Sageville) support IPsec offload for
both transmit and receive paths today. However, the feature
is only enabled for Windows [16] because the Linux stack
does not have DDK interfaces needed for IPsec offload today.
Providing equivalent APIs and DDKSs to leverage from IPsec
offload features supported by the NIC will help boost IPsec
performance while reducing CPU utilization.

Flow hashing

TCP and UDP flows are identified by the 4-tuple for the con-
nection, i.e., the flow is represented by some hash of the
source and destination addresses and ports. This flow hash
is used by the NIC to support multiple receive and trans-
mit descriptor queues to allow efficient distributed processing
across CPUs to achieve hardware based Receive Side Scaling
(RSS) [20].

Application of ESP by IPsec [7] results in the encryption
of the TCP header, so the port information is no longer avail-
able to the NIC. However, IPsec uses the Security Parameter
Index (SPI) to specify a Security Association (SA) which is
described in RFC 4301 (Section 4.1) as “The SA is a simplex
connection that affords security services to the traffic carried
by it”. In the case of L3 traffic tunneled over TCP or UDP,
the SA can be specified as the 4-tuple, thus the SPI uniquely
identifies the flow for the receiver.

The Linux stack supports a software analog of RSS as part
of Receive Packet Steering (RPS) [20] that can be used as a
fall-back when the NIC does not support RPS. Another soft-
ware feature critical to network performance is Receive Flow
Steering (RFS), which also takes into account application lo-
cality, and attempts to steer packets where the application
thread consuming the packet is running.

In our experiments with iPerf, the unavailability of RSS
and RPS due to TCP header encryption proved to be a crit-
ical barrier to network throughput and manual placement of
IRQs and iPerf process binding was needed to improve the
performance.

Both RPS and RFS use the flow hash to identify flows, and
in comparison to RSS, have the advantage of being software
implementations that can be easily extended to use the SPI
for hashing ESP flows.

Software offload

Just as RPS and RFS provide software analogs of hardware
based RSS, the Generic Segmentation Offload (GSO) and
Generic Receive Offload (GRO) provide software equivalents
of TSO and its receive-side counterpart, Large Receive Of-
fload (LRO).

GSO is based on the observation that the major savings be-
hind TSO comes from the reduction of multiple network stack
traversals for small segments to one traversal for a super-
packet. The key concept behind GSO lies in postponing seg-
mentation to the latest possible point in packet processing.
Segmentation of the super-packet to MSS-sized TCP seg-
ments is done just before passing the packets to the drivers
xmit routine.

GRO uses concepts similar to GSO on the receiver. Incom-
ing packets that have the same MAC headers, and for which

there is a match on the flow-identifying fields of the L4 and
L3 headers are merged at reception time and passed up the
stack.

IPsec offload in software can be hooked into the GSO
framework by applying the IPsec transform after GSO breaks
down the super-packet into MSS-sized TCP segments. Stef-
fen Klassert describes one such proposal in [10] that also ad-
dresses GRO. Decapsulation and decryption are done at L.2
using ESP GRO callbacks, and packets are re-injected into
napi_gro_receive (). We describe the performance pro-
file observed before and after the application of this concept
in the next section where we describe results from iPerf ex-
periments to measure throughput.

Results

We focussed our comparisons on single-stream iPerf [4] per-
formance to get a fair comparison of throughput and latency
between unencrypted and encrypted TCP flows in the absence
NIC based Tx/Rx flow hashing based on port numbers. The
platform used for this investigation was an Intel X5-4 with
the 10 Gbe ixgbe driver on a point-to-point 10G link. The
Linux kernel version used for these experiments was a 4.4.0
release-candidate and the ixgbe version/firmware reported by
ethtool was 4.2.1-k/0x800004be. We measured through-
put and peak CPU utilization for the scenarios listed below.

10 T T T T T ; T
30% clear tput Chps ===
P 353% enc tput Gbhps
pealk CPU util in %

85%

89%

iperf single-stream

71%
2 79%
96%

Ters, , . Oro Osg esp dag. deg.
-0 -0 -0 N . -
e Mo, o e gy Y. cC

m.
255 T12g

Figure 3: iPerf single-stream results for clear and encrypted
traffic on an X5-4 using the ixgbe driver. An encryption al-
gorithm of “none” implies that IPsec was not used, whereas
“null” indicates Null encryption, i.e., an ESP header was
added to the packet, but all traffic was sent in the clear.

1. Default settings, i.e., TSO, GSO, GRO, Checksum offload
enabled, with clear (no encryption) traffic

2. s/w offload only: Using ethtool, explicitly disable TSO
and checksum offload for clear traffic, but GSO is still en-
abled on sender, GRO on receiver

3. GRO-only: Using ethtool explicitly disable both TSO
and GSO at the sender, for clear traffic, leaving only GRO
at the receiver

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

4. GSO-only: Using ethtool, explicitly disable TSO and
checksum offload on sender, disable GRO on receiver, for
clear traffic. GSO is still enabled on sender

5. Default settings for hardware offload, using IPsec with
NULL encryption. Thus even though no cryptography
is actually done, and the packet contents are “clear” for
packet sniffers like t cpdump, an ESP header is inserted
between the IP and TCP header

6. Default settings for hardware offload, using IPsec AES-
GCM (Galois Counter Mode) with a key length of 256,
an an ICV length of 16

7. Default settings for hardware offload, using ipsec AES-
CCM (Counter with CBC-MAC) with a key length of 128,
an an ICV length of 8

The instrumentation of IPsec with NULL encryption was
selected to profile the software latencies of the IPsec code-
paths in the absence of any overhead from the cryptographic
transforms. Of the encryption algorithms chosen, AES-GCM
[15] is considered to be the most efficient NIST standard Au-
thenticated Encryption scheme. The CCM mode [1] is simi-
lar to the GCM mode with some benefits that make it suitable
for hardware implementation (smaller gate count), though it
cannot be parallelized easily, thus implementations tend to be
slower than GCM.

It can be seen from Figure 3 that the disabling of
segmentation-offload, either explicitly in step 3 above, or im-
plicitly through the insertion of an ESP header, results in an
exponential drop in throughput. There is also an increase in
CPU utilization with the loss of hardware offload, suggesting
that at least two of the critical bottlenecks impacting perfor-
mance are the loss of offloads in both software and hardware.

Our first approach to try to recover some of the lost per-
formance was through software IPsec offload. We applied
Steffen Klassert’s patch described in [10] and found that the
performance for the NULL-crypto case was vastly improved.
The results reported in Figure 1 show that software offload
of IPsec processing to GSO/GRO brings the throughput to 8
Gbps which is significantly closer to the maximum through-
put for clear traffic when GSO and GRO are in effect. The
GCM-256 case is also able to benefit from the [Psec software
offload, but the computation is CPU bound in this case, due
to the cost of crypto, suggesting that IPsec hardware offload
may be needed for this case.

throughput Gbps (peak CPU util)

esp-null AES-GSM-256
Baseline 2.6 (71%) | 2.17 (83%)
GSO/GRO offload | 8 (100%) | 4.2(100%)

Table 1: Effect of IPsec offload to GRO/GSO using early pro-
totype of patches from Steffen Klassert. All numbers listed
above were obtained using iPerf, with manual IRQ balancing

to ensure that irgs and iPerf processes were pinned to discrete
CPUS

Figure 3 also shows that there is a drop in throughput be-
tween the case of clear traffic with TSO/GSO disabled (case
3 above) and the case of NULL-crypto (case 5 above) for the

baseline. Inspection of the IPsec code paths in the Linux
kernel was done as part of this investigation, and some of
the memory management operations in the ESP path were
identified. A very expensive operation performed as part of
each call to esp_output is an skb_cow_data invocation
to copy the entire packet over to the tail of the sk_buff.
Results reported in Table 1 include optimizations to the out-
put path was modified to avoid the skb_cow_data when the
skb is not cloned/shared.

Other areas where the software paths can be further opti-
mized to reduce the number of memcpy/memmove of data
are currently under investigation.

Conclusions and future work

We have examined two different approaches to encrypting
TCP/UDP payloads, the first by using user-space implemen-
tations of TLS to compute the crypto key for the kernel, and
the second by using IPsec in the conventional manner.

The TLS approach has the property that it does not secure
or modify the TCP/IP header. This is both beneficial, as it
does not deter any performance features in the stack, such as
segmentation offload or receive-side flow steering, and prob-
lematic, as it does not address the security issue of providing
AAA for the L4 headers.

A big drawback to TLS/DTLS is that it is not available
in the kernel, and has a complex control-plane for negotiat-
ing session parameters that is based on the assumption that
the control-plane and data-plane are all synchronized on the
same TCP/UDP stream. Importing the TLS/DTLS control
plane into the kernel is undesirable due the complexity of the
TLS protocol, but separating control and data-planes is highly
risky, as it splits the protocol in ways that the TLS design does
not intend, and introduces new modes of asynchronicity that
will have to be addressed/maintained in the network stack.

In comparison, IPsec is a well-established protocol that al-
ready supports control/data-plane separation, with a wide va-
riety of tools and protocols to manage the control-plane state
without compromising security. IPsec offers the flexibility of
securing both L3 and L4 headers based on the usage mode.

However, network stack performance with [Psec may need
to be improved in the Linux kernel. The software stack to-
day relies heavily on segmentation offload for performance,
and a first step for improving IPsec performance is to enhance
the GSO/GRO infra-structure to support IPsec offload in soft-
ware.

The performance of the networking stack with hardware
offload of IPsec will always result in lower CPU utilization
than the equivalent software implementation. Thus adding
the ability to leverage from hardware IPsec offload in addi-
tion to TSO where possible will help manage the unavoidable
overhead of cryptography for IPsec. We are currently inves-
tigating the feasibility of doing IPsec offload to hardware on
Linux for some Intel NICs and for the IP over InfiniBand case
using Mellanox NICS.

On the receive side, a few simple changes to the NICs are
needed to support RX flow hashing based on SPI. i The prob-
lem of updating NICs to allow the usage of the SPI for Rx-
side load-balancing is fairly simple to solve, and at the cur-

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

rent time, we are working with Intel and Mellanox architects
to achieve this.

Securing the control plane protocols that tunnel over
TCP/UDP should not happen at the expense of avoidable per-
formance cost in the Linux Kernel, and this paper attempts to
propose some feature enhancements to achieve that goal.

Acknowledgments

We would like to thank Steffen Klassert for sharing an early
prototype of the GRO/GSO offload code used for this in-
vestigation, and James Morris for his help with reviewing
this paper. Linden Corbett and Anjali Singhai from the Intel
Fortville Driver team provided the information on NIC IPsec
offload capabilities on Intel NICs. Boris Pismenny provided
the equivalent information for Mellanox InfiniBand NICs.

References

[1] 2004. Recommendation for Block Cipher Modes of Op-
eration: the CCM Mode for Authentication and Confi-
dentiality. http://csrc.nist.gov/publications/nistpubs/800-
38C/SP-800-38C.pdf.

[2] Dierks, T., and Rescorla, E. 2008. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246 (Proposed
Standard). Updated by RFCs 5746, 5878, 6176, 7465,
7507, 7568, 7627, 7685.

[3] Heffernan, A. 1998. Protection of BGP Sessions via the
TCP MDS5 Signature Option. RFC 2385 (Proposed Stan-
dard). Obsoleted by RFC 5925, updated by RFC 6691.

[4] iPerf - The network bandwidth measurement tool.
https://iperf.fr/.

[5] Kaufman, C.; Hoffman, P.; Nir, Y.; Eronen, P.; and Kivi-
nen, T. 2014. Internet Key Exchange Protocol Version 2
(IKEv2). RFC 7296 (INTERNET STANDARD). Updated
by RFC 7427.

[6] KCM: Kernel connection multiplexor
http://thread.gmane.org/gmane.linux.network/378365.

[7] Kent, S., and Seo, K. 2005. Security Architecture for the
Internet Protocol. RFC 4301 (Proposed Standard). Up-
dated by RFCs 6040, 7619.

[8] Kent, S. 2005a. IP Authentication Header. RFC 4302
(Proposed Standard).

[9] Kent, S. 2005b. IP Encapsulating Security Payload
(ESP). RFC 4303 (Proposed Standard).

[10] strongswan: the opensource ipsec-based vpn solution.
http://lists.openwall.net/netdev/2015/12/02/56.

[11] kssl(5) kssl, KSSL - kernel SSL proxy
http://docs.oracle.com/cd/E23824_01/html/821-
1474/kssl-5.html.

[12] [RFC PATCH 0/2] Crypto kernel TLS socket
https://Ikml.org/lkml/2015/11/23/634.

[13] Mahalingam, M.; Dutt, D.; Duda, K.; Agarwal, P;
Kreeger, L.; Sridhar, T.; Bursell, M.; and Wright, C.
2014. Virtual eXtensible Local Area Network (VXLAN):
A Framework for Overlaying Virtualized Layer 2 Net-
works over Layer 3 Networks. RFC 7348 (Informational).

[14] McGrew, D., and Hoffman, P. 2014. Cryptographic Al-
gorithm Implementation Requirements and Usage Guid-
ance for Encapsulating Security Payload (ESP) and Au-
thentication Header (AH). RFC 7321 (Proposed Stan-
dard).

[15] M.Dworkin. 2006. Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode
(GCM) for Confidentiality and Authentication.
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-
800-38D.pdf.

[16] IPsec Offload Version 2
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff5569965

[17] Narten, T.; Gray, E.; Black, D.; Fang, L.; Kreeger, L.;
and Napierala, M. 2014. Problem Statement: Overlays for
Network Virtualization. RFC 7364 (Informational).

[18] Phelan, T. 2008. Datagram Transport Layer Security
(DTLS) over the Datagram Congestion Control Protocol
(DCCP). RFC 5238 (Proposed Standard).

[19] RDS Reliable Datagram Sockets .
https://oss.oracle.com/projects/rds/dist/documentation/rds-
3.1-spec.html.

[20] Scaling in the linux networking stack.
https://www.kernel.org/doc/Documentation/networking/scaling.txt.

[21] Stewart, R. 2015. Optimizing TLS for High-
bandwidth Applications In FreeBSD. Technical report,
Netflix Inc., 100 Winchester Circle Los Gatos, CA 95032.
https://people.freebsd.org/ rrs/asiabsd_2015_tls.pdf.

[22] Touch, J.; Mankin, A.; and Bonica, R. 2010. The TCP
Authentication Option. RFC 5925 (Proposed Standard).

[23] Touch, J. 2007. Defending TCP Against Spoofing At-
tacks. RFC 4953 (Informational).

Author Biography

Sowmini Varadhan is a Consulting Software Engineer in the
Mainline Linux Kernel Group at Oracle Corporation. where
she works on projects spanning Kernel Networking, Dis-
tributed Computing, and Performance.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

