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Abstract
This  paper  takes  a  performance  perspective  look  at  three
classifiers  that  are  part  of  the  Linux  Traffic  Control  (TC)
Classifier-Action(CA)  subsystem  architecture.  Two  of  the
classifiers, namely (e)bpf and flower were recently integrated into
the kernel. A blackbox performance comparison is made between
the two new classifiers and an existing classifier known as u32. 
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 Introduction
The  tc subsystem[1]  provides  powerful  policy  definable
packet-processing  capabilities in the Linux kernel.
The term tc will interchange-ably be used in the document
to refer to both the kernel subsystem as well as the popular
tc utility (used to configure the tc kernel subsystem).
A CA(Classifier-Action)  subset  of  the  tc subsystem  is
attached to a qdisc1.  In this paper we focus only on a small
subset of the Linux CA tc  subsystem, the “C” part(packet
classifiers). The qdiscs essentially are holders of classifiers
which  in  turn  hold  filters  at  the  two  per-port  hooks.  It
should be noted that while those are the only two anchors
currently in use, it is feasible to attach the CA subsystem
via a qdisc on many other hooks within the network stack;
as an example of a recent addition refer to [2]. 

To  provide  context,  we  repeat  some  of  the  applicable
content described in [1].
There  are  two  guiding  principles  for  the  classifier
architecture in tc:

1. It  is  not  possible to  have  a  universal  classifier
because  underlying  technologies  are  constantly
changing.

2. Sometimes we need more than one classifier type,
each with different capabilities, to properly match
a given policy signature. 

1 The  root qdisc is anchored at the egress point of a port
whereas the ingress qdisc is anchored on the ingress side.
Note:  on the egress  side a CA graph can  be attached  at
different qdisc hierarchies and not just the root qdisc.

The CA design choice has fostered innovation2 which has
provided the opportunity to introduce two new classifiers,
which we talk about in this paper, namely: (e)bpf[3] and
flower[4]. 

Figure 1 illustrates the typical layout of how tc CA works.
An  incoming  packet  (alongside  metadata)  is  examined
using filter rules which are priority ordered. Policy control
decides on the packet processing flow. Policy filter rules
could  be  composed  of  the  same  type  (classification
algorithm) or  they  could  be  diverse  and  each  filter  rule
could use a different classification algorithm. The choice of
a  classification  algorithm  could  be  a  matter  of  taste  or
policy intent3. We are not going to go into the details of the
packet pipeline control of a policy graph; for details, the
reader is referred to [1].

In this paper we set out to do performance analysis of the
two new classifiers in comparison to the u32 classifier.

What started as a simple trip to benchmark 3 different  tc
classifiers  for  a  netdev  paper  became  a  journey
documented in this paper. It was non-trivial to zone in on a
few  tests  that  would  be  considered  fair.  We  spent  4-6
weeks  analyzing  different  network  subsystems  where  tc
applies and in the process performed thousands of tests.
Investing all that effort led us to a path of defining more
specific tests and refining them to meet our end goals. We

2 by letting a  thousand flowers  bloom i.e.  not  allowing
monopolies of classification algorithms
3 e.g. to first match using a classifier that looks at some header
and  then  classify  further  using  another  rule  that  uses  a
classification algorithm specialized in string searches

Figure 1: filter-action flow control
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justify our choices of tests in Section “Defining The Tests”
and  define  the  refinement  of  the  tests  and  collection  of
results  in  Section  “Preparing  For  The  Clash  Of  The
Classifiers”.

Meeting The Players

In this section we provide context for the landscape where
the classifiers run.

Illustration 2 provides a nutshell summary of an IP packet
processing path in relation to the CA subsystem. 
An incoming IP packet on a linux netdev/port that needs to
be forwarded goes through the following paths:

1. Optionally  subjected  to  the  ingress  qdisc  and
therefore  optionally  the  CA  subsystem  within
ingress qdisc.

2. Hit the input of IP processing entry point ip_rcv().
3. Hit the IP forwarding code where selection of the

next hop and netdev port is selected.
4. Optionally  subjected  to  the  egress  qdisc  of  the

selected  egress  netdev  port  and  therefore
optionally the egress CA subsystem.

5. Finally sent out on the egress port selected

An outgoing packet (from the host, top right hand corner
arrow of illustration 2) goes through a similar process:

1. Selection of nexthop and egress netdev port (not
shown in illustration 2)

2. Optionally  subjected  to  the  egress  qdisc  of  the
selected netdev port and therefore optionally the
CA subsystem.

As observed we have a choice to use either the ingress CA
or egress CA for the purpose of our testing.

The bpf Classifier
Linux extends the classic Berkeley Packet Filter(bpf)[4] in
two ways: by using sockets as attachment hooks instead of
ports/netdevs  and  by  providing  additional  decision
branching4.

4 Original bpf definition had a binary choice; either the
matched packet is to be allowed or dropped.

Illustration 3 shows a simple linux bpf program's internals.

Within  the  kernel,  bpf  uses  a  register  based  VM  (as
opposed to a  stack based one such as found in the Java
interpreter)  which  makes  it  easy  to  map  to  local  CPU
instruction  sets:  therefore  a  just-in-time  (jit)  bpf  variant
exists in the kernel for many supported CPU architectures.
A bpf  program  can  fetch  data  from the  packet(via  load
instructions),  store  data  and  constants  in  its  registers,
perform  operations  on  packet  data  and  compare(via
compare instructions) the results against constants or other
loaded packet data before issuing a verdict.

A user application needing to install a filter in the kernel
typically would assemble instructions and compile them in
user space before pushing the resulting bytecode into the
kernel.  Although it is trivial  to write C code to generate
bytecode, in our tests we used a utility called pcapc[8].

While  standard  Linux  socket  filters  encapsulate  a
monolithic  bpf  program,  the  tc  bpf  classifier  allows
combining multiple bpf programs to achieve  a policy as
shown in illustration 4.

Illustration 4 also shows the tc bpf classifier with the three
possible  verdicts  a  bpf  program  emits.  For  the  sake  of
brevity, we refer the reader to the netdev11 paper on the tc
bpf classifier [9].

There  are  a  few features  that  we did not include in our
testing  for  lack  of  time:  Starting  kernel  4.1,  the  tc  bpf
classifier  uses  ebpf[10]  which  provides  much  more
powerful packet processing capabilities. None of the tests
documented exercised those features. We also did not use
bpf to craft tc actions or use the DA(Direct Action) mode
where the lookup and resulting action could be all crafted
with bpf bytecode.

Illustration 4: Classic BPF use in tc

Illustration 2: Basic Landscape

Illustration 3: Classic BPF
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The flower Classifier
The flower classifier[3] started life trying to be a 14 tuple
openflow  classifier.  During  its  patch  submission  phase,
David Miller requested that it  be reconsidered to instead
utilize the kernel  flow cache. It was then rewritten in its
current format which classifies based on linux kernel flow
cache fields.

The flow cache is built when a packet bubbles up or down
the network stack. Each network sublayer updates the flow
cache  and  may  re-use  the  cached  information  from  the
previous sublayer. 

Flower supports the following tuples which are collected in
the flow cache:

source  MAC,  destination  MAC,  ipv4  or  v6  source  and
destination  IP  addresses,  and  source  and  destination
transport  port  number.  Additionally,  the  netdev/port  a
forwarded packet arrived on is  a valid classification tuple
(eg  is  useful  at  the  egress  CA classification  in  case  of
forwarding paths). Essentially, these 8 tuples are used for
lookups in flower.

There are other tuples collected in the flow cache such as
GRE keys, MPLS, vlanids and TIPC which flower ignores
at the time of publication but potentially will be available
in the future.

A user  programs policy into the kernel using the tc utility
by specifying the flow cache tuples of choice.  The filter
rules are stored in the kernel in a hash table and used in the
packet path for lookups.

As illustration 5 demonstrates, when a packet arrives at the
specific  CA (in/egress)  subsystem,  flower  checks  if  the
packet already has the flow cache populated. If the cache
does not exist yet, flower then creates it by invoking all the
relevant  subsystems  to  fill  in  their  corresponding  flow
cache  fields.  If,  however,  the  cache  already  exists  then
flower uses the packet's flow cache fields as keys to lookup
the (policy populated) hash table.

Upon a match,  the  resulting  bound action  graph is  then
exercised. 

The u32 classifier

The  ugly  (or  Universal)  32bit  key  Packet  Classifier  has
been around since the introduction of traffic  control  into
Linux.

U32  uses  32-bit  key/mask  chunks  on  arbitrary  packet
offsets for filter matching. The filter nodes each constitute
one  or  more  of  these  32bit  key/mask/offset  constructs
which are used for matching. Nodes hang off hash table
buckets.

Nodes have 32 bit handles that uniquely identify them as
illustrated in figure 6 describing their location. The 32bit
handles are split into 12bit hash table id, 8bit bucket id and
12bit node id. This means the system can have a maximum
of 4096 hash tables, each with 256 buckets and with each
bucket holding a maximum of 4096 nodes. 

Nodes can link to next level hash tables, other nodes and
buckets. A very efficient protocol parse tree can be crafted
using  these  described  semantics  as  we  will  demonstrate
later. 

The default u32 classifier setup is shown in Illustration 6.
A default  hash table (hash table id 0x800) with a  single
bucket (bucket id 0) is created;  user entries are populated
in  order  of  priority.  Essentially  this  becomes  a  priority
ordered linked list of filters. An incoming packet will be
parsed  and  matched  in  the  filter  priority  list.  The  first
match  wins  (meaning  there  could  be  other  low  priority
filters which partially or fully match the packet)  and the
resulting bound action graph is then exercised.

In more complex setups (as we describe later) the packet
headers can be incrementally parsed and the packet walked
through  the  mesh  of  the  constructed  hash  tables  to
eventually come to a leaf node which holds a bound action
graph. 

Defining The Tests
We define the classifiers and their associated algorithms as
the System Under Test(SUT). 

The starting assumption was that all classifiers should be
able to handle:

Illustration 5: The Flower Classifier

Illustration 6: Basic u32 classifier
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• Per flow filter rules as opposed to a grouping of
flows (e.g. via hashing algorithms). We define an
ip  flow  as  the  classical  5  tuple  specification
(source  ip  address,  destination  ip  address,  ip
protocol,  source  transport  port  and  destination
transport port)

• Account for every packet and byte at a per-flow
level filter (using counters) as test validation.

It  is  also  required  that  we  be  fair  to  all  3  classifier
algorithms chosen  and  pick  tests  that  did  not  favor  one
algorithm over another.

Picking The Metrics
We  picked  several  metrics  to  compare  the  different
classifiers.  We  list  them  here  to  illustrate  our  thought
process.

• Datapath Throughput performance 

• Datapath Latency 

• Usability

◦ operator friendliness

◦ programmatic interfaces and/or scriptability

• Control path throughput and latency 

We spent a lot of time on a discovery journey to define the
constraints  but  we  were  only  able  to  test  the  data  path
throughput performance in time for the conference. 

We will no more than an educated opinion on the usability
metric; and we hope in future work to cover the remaining
outstanding metrics.

Reducing Test Variables
Given that the classifiers are surrounded by a lot of kernel
code,  the  results  could  be  influenced  by  a  lot  of  other
kernel  and  hardware  variables;  therefore,  we  needed  as
best as we could to isolate the SUT such that our results are
not distorted by distracting overhead. To focus on the SUT,
therefore, required reducing as many variables as possible. 

Our initial instinct for throughput and latency tests was to
connect  two  physical  machines  back  to  back:  a  sender
machine  which  generates  traffic  to  a  receiver  machine
where  the  SUT resided.  The sender  machine  would  use
pktgen[6]  to  send  packets  to  the  SUT  machine.  The
configuration  of  the  SUT  machine  would  decide  what
packet  path(per  illustration 2) to take to get  to the SUT.
The packet processing would then complete when packets
get  forwarded  back to  the sender  box where  our results
would be captured.

As it turned out, preliminary tests with this approach had
so many variables that it affected the results and analysis;
we  spent  time  staring  at  profiles  and  decided  against
pursuing  such  a  setup.  The following were  identified  as
possible hazards:

– System multi-processing contention and locks 

– Driver code paths (both ingress + egress) 

– Slow system code paths 

– Intermediate handoff queues (backlog, egress qdisc etc)

Pktgen Ingress Mode

The  first  thing  we  elected  to  do  was  to  run  pktgen  in
ingress mode [7]. This meant we did not need an external
sender machine and could therefore reduce variable cost of
the  ingress  driver(driver  interrupts,  code  path  etc).  This
mode  also  allowed  us  to  generate  packets  on  a  single
stream on one cpu; which helped us achieve our goal to not
have  contention  across  multiple  CPU  threads  being
accounted for.

Using The Dummy Netdev

The second thing we chose to help in reducing variables
was the use of the Linux dummy driver. The dummy driver
acts as a black hole for any packets sent  to it.  It  counts
packets and their associated bytes then drops them on the
floor. By using the dummy driver we do not have to worry
about  sending  packets  externally  and  the  associated
overhead of the driver (interrupts, locks, long code paths
etc).

SUT Machine Parameters
As noted above, at this point in our progression, we had
achieved the pleasure of running all our tests on a single
machine. We chose to use the Intel NUC[11] for its size5.
The NUC has the following parameters:

• Quad core i7-5557u @3.10Ghz

• 16G RAM (1600Mhz) Dual memory channels

Kernel choice:

• net-next 4.4.1-rc1 with two patches, namely:

◦ bug fix for flower classifier[12]

◦ pktgen egress enhancement to not bypass the
egress qdisc6

Picking The Battle Scene
At this point in our journey we had identified the different
scenarios for testing. The reincarnation of Illustration 2 is
shown  in  Illustration  7.  Given  our  interests  are  to  test
classifiers  in  a  fair  way  for  all  three  classification
algorithms,  we  chose  to  experiment  by  dropping  and
accounting for packets at different code paths illustrated by
the blackholes in Illustration 7.

5 So we could bring it to the conference and show live
testing and results (which we did).

6 Jamal created this patch. John Fastabend independently
came up with a  different  patch  after  a  discussion on
netdev. John has promised to merge the two and submit
upstream.
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There  are  two  possible  sources  of  packets;  one  at  the
pktgen ingress(emulating packets coming from outside the
machine)  and  another  at  the  pktgen egress (emulating
packets coming from host side withing the machine)

Dropping At ip_rcv()

On the ingress path we start with intentionally setting the
wrong destination MAC address via pktgen; this means the
network stack will not recognize that packet as belonging
to  the  system. The result  is   that  ip_rcv() will  drop  the
packets it receives.

With  that  setup  in  place  went  through  the  following
scenarios:

1. Optionally add the ingress qdisc in the packet test path.
When the qdisc is skipped we refer to the test in the
document as “no qdisc”.

2. When  ingress  qdisc  is  present,  optionally  add  a  CA
subsystem with choice of classifier under test.

• When the qdisc is used but the CA subsystem
is  skipped,  we  refer  to  the  test  as  “qdisc
only”.

• When a CA subsystem is added, we install a
single policy match with an action which then
accepts and counts the packet. We repeat this
exercise for all classifiers under test. 

Pktgen was made to send, using a single core, 30 seconds
worth of bursts as fast as possible; all tests are repeated 4
times.  Pktgen  reports  the  averaged  achieved  throughput
which we record and graph.

Illustration  8  shows  the  results.  The  difference  in
performance  when  an  ingress  qdisc  (“qdisc  only”)  was
installed vs when none existed (“no qdisc”) was less than
1%. As can be observed, at packet size of 1020 bytes both
tests  showed pktgen  throughput  of  about  250Gbps.  This
result was impressive for a single processor performance.
But more importantly it demonstrates that  the presence of
an ingress qdisc did not add overhead that would gravely
affect our results collection.

For classifiers the results demonstrate that the differences
between u32, bpfjit and bpf were also very small (although
again consistently reproducible) at 173Gbps, 166Gbps, and
151Gbps. On the other hand flower did not fare as well
capping at about 63Gbps. Should be noted the numbers for
both u32 and bpfjit were north of 20Mpps.

These  tests  were  unfair  to  flower.  The  flower  classifier
thrives on flow cache being populated. Such a case would
happen  on  host-sourced  packets.  In  our  test,  the  flower
classifier had to rebuild the cache for every single packet.
Flower's  usage  of  rhashtable  was a  clear  bottleneck  that
was visible. However, that may be expected with the 64 bit
compares used and better results may be achieved if we did
2x32-bit compares. So very likely there is room to improve
the rhashtable comparator.

It was also pointed to us that the pcapc tool generated non-
optimal  bpf  bytecode  for  both  bpf  and  bpfjit.  We  were
hoping to get results with more optimal bpf bytecode but
could not get it done before paper submission deadline. We
hope to publish our results and update the paper when we
get the test done.

In all our tests in the rest of this paper, we verified that the
bpfjit extension always outperformed bpf without jit. For
this reason we stopped testing any further bpf without jit.

Dropping at Ingress CA

Our next sets of experiments involved adding a drop policy
at the ingress. It was felt this would shorten the code path
and make it easier to account for.

Illustration  9  shows  the  results.  To  our  surprise,  only
flower  showed consistent  improvement  over  dropping at
ip_rcv().  This  maybe  explained  as  due  to  the  effect  of
memory  pressure.  We  did  not  have  time  to  investigate
further.

Illustration 7: Many Roads To Take

Illustration  8:  Mbps  Throughput  Of  Packets
Dropped At ip_rcv()
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The difference between dropping at the two locations was
so small that given a choice between the two test setups,
we choose to drop at tc ingress due to the convenience of
the testing and the simplicity of result collection.

Ingress To Egress Path

At this point in our progression we set out to test sourcing
packets  at  ingress  but  allowing  them to  proceed  to  the
egress.

Our initial goal was to forward packets to an ipv4 route-
selected  nexthop  via  the  dummy device  and  experiment
with dropping packets at the different hooks on the egress.
We were very surprised at the performance degradation of
forwarding. We ended spending a lot of cycles chasing this
ghost.  We  stared  at  a  lot  of  profiles  which  seemed  to
indicate the fib_trie lookup was the bottleneck even with a
single route. 

To  analyze  further,  we  removed  the  ingress  qdisc  and
filters from the test path and introduced a blackhole route.
The blackhole route drops the packets right after ip lookup
(reducing the overhead of the second leg which traverses
code towards and including the dummy end drops). As the
illustration  10  shows,  we  see  a  pktgen  throughput  of
25Gbps vs 21Gbps for blackhole drop vs routing to egress
which  points  to  the  fact  the  processing  leg  after  route
lookup is  not  a  large  contributor  to  these  results  I.e  the
theory is that the bottleneck lies in IP forwarding.

To get a different forwarding view, we experimented with
the test classifiers using the mirred action to redirect to the
dummy  device(bypassing  IP forwarding).  Illustration  10
shows  that  this  gave  us  in  most  cases  3  times  the
performance. While it is not totally fair to compare the two
(forwarding does a few more things), we are still puzzled
by these numbers.  It  is  possible there  were  some icache
effect due to the long code path. We did not have time to
investigate further;  chasing this ghost  meant  taking time
away from our real goal of testing the classifiers. We report
these results for anyone interested in pursuing them further.
The experiments are very simple to reproduce.

So at this point in our investigation, it was clear to us  we
do not want to proceed with testing by sourcing at ingress
and  proceeding  all  the  way  to  the  egress  due  to  the
forwarding  overhead  polluting  the  results. And  for  that
reason we stopped running that specific path's tests.

Pktgen Source At Egress And Dropping At CA

Our next step was to test sourcing on egress (emulating the
host stack sourcing these packets).

Illustration 11 shows the results at 1020B. In the “Default”
case  we  see  the  egress  qdisc  being  bypassed  and  the
dummy  device  dropping  packets.  The  throughput
performance was 160Gbps, a  lot  slower than the ingress
side but nevertheless still formidable for a single CPU. 

In  order  to  add  classifiers,  we  needed  to  add  an  egress
qdisc.  And  things  got  interesting  when  we  did  that:  as
illustrated  with  graph “qdisc  only”  we see  a  throughput
drop of almost 50%. Profiles show the egress qdisc lock
being the culprit.  The performance discrepancy surprised
us given we are only running a traffic stream on a single
CPU and no NIC hardware overhead existed. This dispells
the popular myth that the egress cost is related to driver
DMA overhead.

U32 and bpfjit showed a tiny drop on performance in the
comparison  against  adding  an  egress  qdisc  (both  in  the
80Gbps range) indicating the main overhead comes from
the  qdisc.  Flower  showed degraded  performance  for  the
same reason explained for the ingress side (I.e related for
need to rebuild flow cache).

Illustration  9:  Throughput  comparison  of
dropping at ip_rcv vs tc action

Illustration 10: Ingress To Egress Path 

Illustration 11: Egress Transmit and TC Drop
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At this point we decided that it was a bad idea to run our
tests sourced at the egress. 

We decided to stop experimenting with the different hooks
and just settle on the ingress tc drop tests.

 Jitter Effect On Collected Results

On all  our test, as mentioned earlier,  we always made 4
runs of each test lasting 30 seconds. We would then take
the  average  of  the  4  runs  and  compare  it  against  the
minimum and maximum results.  Illustration  12  shows a
summary across different packet sizes.

We  observe  that  the  jitter  was  so  small  it  felt
inconsequential.  So while we continued to collect all the
results; going forward on this paper we are  going only to
show the averages.

Packet Size Effect On Collected Results

Another observation we made is that the effect of packet
size was not very large. I.e our packets/second results were
not very much affected by packet size.

Illustration 13 shows the results for earlier experiments.

How Many Classification Tuples?

So  far  all  our  reported  tests  have  been  running  with  a
single flow and single tuple to match on. This is not very
realistic  real  world  scenario.  We  therefore  tested  where
each of the classifiers looks up the five tuples described
earlier. Illustration 14 shows the results.

The  performance  differences  between  the  two  scenarios
were not huge.

So from this point on, all our experiments will run with 5
tuples.

Preparing For The Clash Of The Classifiers
At this point in our investigation, we had decided on the
our parametrization as constituting the following:

• All test running on a single core.

• Ingress tc qdisc, per-flow 5 tuple match classifier
filter rule and drop.

• ignore bpf: BPFjit was always better

• Focus  on  average  of  4  runs  each  30  seconds
ignoring max and min values in result illustration

• Use a single Packet size of 1020B

The Final Confrontation
Now that we had our SUT, tests and metrics well defined
we set to run our core tests.

Given time constraints we settled on doing only throughput
tests. We selected to vary the number of configured filters
and looking for the best vs worst case scenarios.

For best case scenario tests, we arranged the rules such that
the  packet  lookup finds  a  target  matching  filter  on  first
lookup. By varying the number of filters we would expose
any  issues  with  possibly  lookup  dependencies  in
classification algorithm.

For worst case scenario, we arranged the rules such that a
target filter match is found last. Essentially we forced the

Illustration  12:  Ingress  Drop  Action  With
Min/Avg/Max runs

Illustration  13:  PPS  Drop  At  ip_rcv()  with
different packet sizes

Illustration 14: varying number of tuples from
1 to 5
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lookup to be a linked list walk with the target match found
last.

In both cases we repeated tests with incrementally adding
filters ranging from 1 to 1000.

Best Case Scenario

As can be observed for all the 3 classifier types varying the
number  of  filters  did  not  have  any  impact.  U32
performance was around 175Gbps; bpfjit around 165Gbps
and flower around 65Gbps.

Worst Case Scenario

As observed there is a very sharp drop in performance as
the number of rules goes beyond 100.

To put it into perspective:

All the classifiers performances went down by a magnitude
each time the number went up by a magnitude. In the worst
case, at 1000 rules, u32 outperformed the other two being
able to process about 463Mbps while bpfjit was able to do
73Mbps and flower did 88Mbps.

We believe that given in each case the lookups were linear
with increasing number of filters these deteriorating results
were to be expected. We did not have time to investigate
why for example u32 fared so much better than the other
two.  We are  going  to  take  a  second  look at  this  in  the
future.

Scripting u32 to improve performance

As mentioned earlier, the u32 classifier allows for scripting
to dictate how lookups occur. In this case we arranged the
classification  based  on  our  knowledge  of  the  traffic
patterns.

We made the first lookup hash on the expected subnet /24
and then based on the 3rd octet  of the source IP address
selected a bucket on hash table 1.

Each  bucket  on hash  table 1 was  linked to  a  secondary
hash table (for a total of 256 buckets). For each secondary
table bucket we would look at the 4th octet of the source IP
address and select bucket. 

On  each  secondary  table  bucket  we  had  a  single  match
inserted for a total of 64K matches.

Any of the 64K entries could be found in 3 lookups. 

We then generated traffic that had 64K different flows.   

Our results are shown in Illustration 18. The results were
very consistent in the range of 115Gbps at 1020B packet
size. It was clear from experimentation that we could have
added  over  128K  flows  and  still  achieved  the  same
performance numbers - but we did not have time to pursue
such an experiment further.

Illustration  15: Best Case Lookup vs number
of rules

Illustration 16: Worst Case Lookup vs number
of filters

Illustration  17:  Scripting  u32  for  multi-trie
lookup
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If you take away the fact that we were aware of how the
traffic patterns looked like and therefore optimized for the
best  case  scenario,  these  are  impressive  numbers
considering we run on a single core.

It  should  be  noted  with  the  ebpf  extensions,  the  bpf
classifier  can  be  taught  likewise  to  behave  this  way
programmatically  (not  by  scripting,  rather  coding  and
compiling).

Usability
We did not perform a formal analysis of the usability of the
different classifiers, so what we are positing is merely an
opinion.

U32 and bpf do not fare well from a human usability point
of  view;  bpf is  more human friendly7 than u32 whereas
flower was the best of all 3.

From a code programming flexibility and usability point of
view, bpf is the winner. 

U32  can  be  scripted,  as  we  demonstrated,  to  provide
powerful custom lookups. It is arguably the best operator
friendly classifier.

Conclusion
We started with intent to work on performance analysis of
3 tc classifiers: bpf, flower and u32. Instead the majority of
our time was spent on a journey of discovery on how best
to perform the analysis in a fair and non-intrusive way.

We  argue  that  our  most  important  contribution  is  the
documentation of the journey we took. We hope it inspires
other netdevers, when doing performance testing, to watch
closely on details such as metrics, assumptions made and
isolation  of  the  SUT  from  other  subsystem  noise
contribution.  The  wise  saying  “numbers  speak  loud”
applies8 with the caveat  lector  that:  Seville  Oranges and
Ottawa  strawberries  are  fruits  but  different;  a  fair
comparison requires understanding of taste-bud metrics as
opposed to the falsehood of striving to claim the oranges as

7 If you ignored the fact  that you need a bpf bytecode
compilation (which maybe harder to debug).

8 Posting of netperf results and claiming victory

better strawberries9. We hope the reader is left with at least
the  view  that  we  tried  hard  to  achieve  that  goal  when
comparing the 3 classifiers.

Overall,  given the constraints we faced we conclude  u32
was the most performant classifier. 

The bpf classifier was impressive – and as described could
be tweaked to give better numbers. The flower classifier
would  perform  much  better  with  host-stack  sourced
packets.  We did not have time to pursue either angle of
validation and we leave this to future work.

Future Work
There are several opportune activities that the community
could undertake to get us to the next level.

The bpf classifier performance testing with ebpf helpers is
of definite interest to the netdev community. Of additional
interest is to see if integration of actions in bpf classifiers
provides even more improved performance.

Testing the Flower classifier on an egress path with many
flows  is  something  that  we  would  like  to  pursue.  We
believe Flower will shine in such a setup.

It is our opinion that both u32 and flower will hands down
beat bpf in the control to datapath update if the rules were
to be generated and updated on the fly due to the fact that
the bpf  program will  have  to  be generated  before  being
installed. We hope to prove (or disprove) this point in the
future.

Acknowledgements
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9 Yes, that is a pretty lame way of saying “orange-apple”;
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Illustration 18: Multi-trie results
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