
Zebra 2.0 and Lagopus:
newly-designed routing stack on high-performance packet forwarder

Kunihiro Ishiguro∗, Yoshihiro Nakajima†, Masaru Oki‡, Hirokazu Takahashi†
∗ Hash-Set, Tokyo, Japan

† Nippon Telegraph and Telephone Corporation, Tokyo, Japan
‡ Internet Initiative Japan Inc, Tokyo, Japan

e-mail: ishiguro@hash-set.com, nakajima.yoshihiro@lab.ntt.co.jp, m-oki@iij.ad.jp, takahashi.hirokazu@lab.ntt.co.jp

Abstract

Zebra 2.0 is the new version of open source networking
software which is implemented from scratch. Zebra 2.0
is designed to supports BGP/OSPF/LDP/RSVP-TE and co-
working with Lagopus as fast packet forwarder with Open-
Flow API. In this new version of Zebra, it adapts new archi-
tecture which is mixture of thread model and task completion
model to achieve maximum scalability with multi-core CPUs.
Zebra has separate independent configuration manager that
supports commit/rollback and validation functionality. The
configuration manager understand YANG based configuration
model so we can easily add a new configuration written in
YANG. Lagopus is an SDN/OpenFlow software switch that is
designed to achieve high-performance packet processing and
high-scalable flow handling leveraging multi-core CPUs and
DPDK on commodity servers and commodity NICs. Lagopus
supports match/action-based packet forwarding and process-
ing as well as encapsulation/decapsulation operation for MPLS
and VxLAN. The inter working mechanism of the user space
data plane of Lagopus and the network stack in kernel allows
easy integration with Zebra 2.0 and its OpenConfigd.

Keywords
Routing stack, BGP, OSPF, LDP, RSVP-TE, Packet for-
warder, YANG, OpenConfig.

Introduction
Zebra 2.0 is a sequel to GNU Zebra [5] / Quagga [13] which is
widely used an open source routing software. Since first GNU
Zebra was designed in 1996, the architecture start showing
it’s age. In past 20 years, there were a lot of technology
evolution. Here we have re-designed a 21st century routing
software from the ground up to match to the today’s industry
needs.

In this paper, we describe the design and implemenation of
Zebra 2.0 and its integration to a high-performance software
switch called Lagopus.

In the next section, we mention important issues to be
solved in the first GNU Zebra. In Section III, we describe
the basic design and implementation of Zebra 2.0. In Section
IV, we present Lagopus software switch and its integration to
Zebra 2.0. Finally, we conclude the paper.

First GNU Zebra architecture and its issues
When we designed the first GNU Zebra, the biggest ambition
was to make multi-process networking software work. The
first GNU Zebra is made from a collection of several dae-
mons that work together to build the routing table. There may
be several protocol-specific routing daemons and Zebra’s ker-
nel routing manager. Figure 1 shows the architecture of the
first GNU Zebra. RIB (Routing Information Base) / FIB (For-
warding Information Base) and the interface manager are sep-
arated into an isolated process called ’zebra’. All of protocol
handling is also separated to it’s own process such as ’ripd’,
’ospfd’, ’bgpd’ and so on. This makes easier to add a new
protocol modules without re-building the whole staff. It in-
creases the system stability - one process crash does not af-
fect to other process. Most importantly it extend possibility of
efficient use of multi-core CPU and / or distributed environ-
ments resources. The architecture succeeded and we believe
that it shows the architecture works in various operational en-
vironments. At the same time there was several problems to
be solved.

One of them is a performance issue. All of protocol mod-
ules are single threaded because matured threading library did
not exist when we designed the first GNU Zebra. Therefore
there must be careful thoughts about event management and
non-preemptive manner of task execution. This is really an-
noying overhead to the programmer.

Another issue is to support various virtualized environ-
ments, such as VRF (Virtual Routing and Forwarding), VM
(Virtual Machine) and Containers. When we designed the
original Zebra architecture, virtualized environment was not
so common as today. Thus we did not take into account of the
possibility of the software runs on a virtualized environment.

Adding to that in past couple of years there are several
new packet forwarding architectures and technologies, such
as DPDK (Data Plane Development Kit)[3], OF-DPA (Open-
Flow Data Plane Abstraction)[9] emerged to industry. That
needs tight integration with networking software today.

Design and Implementation
We have designed Zebra 2.0 to achieve high-performance net-
work protocol handling and high-extensible for various plat-
form. Figure 2 shows the architecture overview of Zebra 2.0.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

bgpd ripd ospfd zebra

UNIX	Kernel	routing	table

zAPI

Figure 1: The architecture of the first GNU Zebra.

BGP OPSF RSVP-
TE LDP

FEA

Figure 2: The architecture of Zebra 2.0.

New process and thread model
The biggest bottle neck of the original design was protocol
handling affect to packet in/out and keep-alive timer. For
example, a large SPF (Shortest Path First) calculation is re-
quired in a large-scale network on OSPF, OSPF can’t handle
packet in/out and keep-alive timer without voluntary yield of
the execution of SPF calculation because it is single threaded.
This lead OSPF to Hello time out. That was the typical sce-
nario of the performance issue.

Zebra 2.0 employs totally new process and thread model to
achieves drastically improved performance and stability. In
Zebra 2.0, the protocol handler and packet in/out (including
keep alive timer) handler are executed in a separate thread.
By default, when a new protocol module is instantiated, two
threads are created. One is for the protocol handling, the an-
other one is for packet in/out and time out handling. In ad-
dition, a lock-free queue between these two threads is intro-
duced.

When a control packet comes in, the packet is handled by a
packet handler thread. The packet handler thread is supposed
to update keep-alive timer and to validate the packet, then the
thread puts into the shared lock free queue. With this architec-
ture, protocol handling, such as SPF calculation, large scale
BGP table updates, do not interfere with keep-alive timers.

As we learned from nginx[7] and node.js[8] achievement,
the task completion model with single thread has a lot of
advantage over to multi-thread model in performance stand
point. In Zebra 2.0 we combine the best part of task comple-
tion model and multi thread model.

Separation of Configuration Manager
In Zebra 2.0, configuration manager is not part of the
implementation. Today’s industry require having a sin-
gle integrated configuration manager which supports com-
mit/rollback with well designed configuration database. The
configuration manager handles all of the configuration on the
box or even boxes. To do that, we decouple configuration
manager from Zebra 2.0 then we introduce its own indepen-
dent software package called ‘OpenConfigd’.

The OpenConfigd generate configuration schema de-
scribed in YANG[1]. Several interfaces and APIs such as CLI
(Command Line Interface), NETCONF and REST API are

OpenConfigd

Zebra	2.0 Lagopus

confsh

DB

completion show config

API API

Figure 3: The architecture of the OpenConfigd.

automatically generated by OpenConfigd with YANG model.
OpenConfigd integrates OpenConfig[11] model, that aims to
develop programmatic interfaces and tools for managing net-
works in a dynamic and vendor-neutral way.

OpenConfigd has user interface shell called ’confsh’. It
communicates the configuration manager to show possi-
ble completion and show to execute the command. In
Zebra 2.0, all of the protocol modules has configuration
set/unset/validate callback functions which will be invoked
from OpenConfigd. OpenConfigd use gRPC for transport to
allow easy micro-service integration.

Forwarding Engine Abstraction
In past couple of years, new forwarding technology was in-
vented. DPDK is one of the example. It delivers the packet
directly from device buffer to user-space packet forwarder.
To handle the architecture, we need to have well designed
FEA (Forwarding Engine Abstraction). Other example is OF-
DPA that wraps hardware functionality provided by merchant
switch silicon with OpenFlow like APIs. With OF-DPA,
hardware forwarder configuration is much easier than it used
to be. Software forwarder and hardware forwarder is pretty
different. Therefore it require different API calls with dif-
ferent kind of objects as arguments. In addition, sometimes
it require different API call sequences. Much worse, there

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

might be a situation of supporting both software forwarder
and hardware forwarder at the same time to handle slow path.

In Zebra 2.0, new packet forwarding abstraction layer
called FEA is introduced. FEA has sets of API which can
automatically handle various different configuration under-
neath of packet forwarders. FEA provides primitive con-
trol and configuration API for packet forwarder including in-
terface/port management, bridge management, routing table,
ARP table. A protocol modules must attach FEA and call
FEA APIs for packet forwarder controls.

Virtualization

Virtualization support is inevitable to today’s networking in-
dustry for an execution environment of Zebra 2.0. A typical
situation is running a networking protocol instance on vir-
tual machine. Other case is running a networking protocol
instance in a container-based environment such as Docker[2].

In addition, network virtualization support is also in-
evitable today for many use cases. The required network
virtualization functionalities includes VRF, network name
space, overlay networking and so on. Sometimes, a logically-
centralized protocol handling or control for network virtual-
ization is required

Hence all these require is the separation of networking pro-
tocol instance from underlying networking stack. In Zebra
2.0, packet forwarding instances called FEA and protocol
module instance is completely separated. To support normal
Linux software forwarder with single OSPF instance, C++
class called FEALinux is instantiated, then it will be attached
to OSPF instance. User can find any combination of FEA and
protocol module is possible. That could be 1:1, 1:n, or n:1.

OpenFlow Support and Other Software Integration

Integration with other software is very important factor to to-
day’s software. No software can solve all of the issues by it-
self and Zebra 2.0 is no exception. Especially Zebra 2.0 needs
to leverage state-of-the-art packet forwarder technology to re-
alize IP routing, MPLS label switching, L3-VPN and so on.
These packet forwarder is supposed to be controlled through
FEA instance in Zebra 2.0 as mentioned before.

OpenFlow switch[4] are one of interesting system to be
integrated to Zebra 2.0. The OpenFlow switch provides flow-
based switch abstraction APIs for network application and
hides complexities of switch implementation for application
developers. We have developed high-performance/scalable
OpenFlow software switch called “Lagopus”. Zebra 2.0
leverage the outcome of Lagopus Project and Lagopus works
as one of the protocol module of Zebra 2.0 to support
OpenFlow switch. One merit of using Lagopus as packet
forwarder, Zebra 2.0 takes advantage of DPDK for high-
performance packet processing on Intel x86 servers.

Zebra 2.0 is implemented in C++11 standard. Therefore in-
tegration with Java based OpenFlow controller, such as Open
Daylight[12] and ONOS[10], we use SWIG[14] to encapsu-
late C++ class to Java. With SWIG, it is possible to integrate
with other languages such as Python and Go.

switch	configuration	datastore
(configuration/stats	API,	SW	DSL)

Standard	NICDPDK-enabled	NIC

DPDK	libs

Lagopus software	dataplane

flow	lookup flow	cache

Packet	processing	pipeline

queue/
policer

Flow	table
Flow	tableflow	
table

Flow	table
Flow	tableGroup
table

Flow	table
Flow	tablemeter
table

switch	manager/	switch	HAL

OpenFlow
1.3	

agent

JSON	IF

SNM
P

CLI

OVSDB

NET
CONF

L2	API

L3	API

raw-socket	/	Kernel

Figure 4: The design of Lagopus switch.

NIC 1
RX

NIC 2
RX

I/O	RX
CPU0

I/O	RX
CPU1

NIC 1
TX

NIC 2
TX

I/O	TX
CPU6

I/O	TX
CPU7

Flow	lookup
packet	processing

CPU2

Flow	lookup
packet	processing

CPU4

Flow	lookup
packet	processing

CPU3

Flow	lookup
packet	processing

CPU5

NIC 3
RX

NIC 4
RX

NIC 3
TX

NIC 4
TX

NIC	RX	buffer

Ring	buffer

Ring	buffer NIC	TX	buffer

Figure 5: Packet processing on Lagopus dataplane.

Lagopus software switch
Lagopus[6] is a high-performance SDN/OpenFlow software
switch with highly-programmable and flexible packet pro-
cessing pipeline. Figure 4 shows the design of Lagopus soft-
ware switch.

Lagopus provides match/action-based flow-aware data-
plane APIs to routing applications. Lagopus supports multi-
layer flow lookup and various protocol frame processing
functionality in software dataplane. General tunnel encapsu-
lation/decapsulation is available to realise overlay networking
and VPLS (Virtual Private LAN Service) and VPWS (Virtual
Private Wire Service) with MPLS technology.

Lagopus dataplane is designed to exploit the power of
multi-core CPU and Ethernet NIC for performance and scala-
bility. Figure 5 shows the implementation of packet process-
ing on Lagopus dataplane with multi-core CPUs. Lagopus
leverages DPDK technologies to achieve high-performance
packet forwarder in user space on commodity Intel x86
servers. For user space or kernel routing stack on Linux,
Lagopus provides packet in/out function of control-plane re-
lated packet escalation with tap interface that corresponds to
the dedicated interface/port in Lagopus dataplane. The Lago-
pus dataplane achieves more than 20 MPPS (Packet Per Sec-
ond) with the conditions of over-1M flow entries.

To enable more flexible swtich configuration for a network
managment system, Lagopus provides lots of API and inter-
faces, such as OpenFlow, CLI, REST API, and SNMP.

Zebra 2.0 Integration
To integrate Lagopus to Zebra 2.0, the following adaptations
are required:

• Dataplane configuration

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

Data	Plane

Lagopus

BGP OPSF RSVP-TE LDP

FEA

Zebra	2.0

OpenConfigd DB

Data	Plane
Manager

Configuration
datastore

RIB/FIB
control Interface/Port

bridge mngmt

Interface/Port
bridge mngmt

C-plane related
packets

User-traffic User-traffic

C-plane related packets

C-plane packet
escalation via tap IF

FIB

ARP

Stats

DB

C-plane packet
escalation via tap IF

configcontrol

Figure 6: Zebra 2.0 and its integration to Lagopus.

The configuration of Lagopus is supposed to be achieved
by OpenConfigd. OpenConfigd tells the configuration
datastore of Lagopus to configure Lagopus dataplane, for
example, which interfaces are used for dataplane.

• Dataplane control
FEA of Zebra 2.0 installs RIB/FIB to Lagopus dataplane as
fast packet forwarder. Lagopus dataplane manager recieves
the series of request to control L3/L2 then, the manager
converts the series of request to the match/action-based
flow rules, which are FIB on Lagopus dataplane. The dat-
aplane manager of Lagopus sends flow statistics for FEA.

• Control-plane-related packet escalation
To facilitate packet in/out functionality on Zebra 2.0, a set
of match/action rules for control-plane-related packet es-
calation and peer communication establishment, such as
BGP, OSPF, RIP and LDP, is supposed to be install to
Lagopus dataplane before the packet forwarding starts. If
a protocol handler performs packet out to an opposite rout-
ing node, the Lagopus data plane receives the packets from
Zebra 2.0 and sends them through a dedicated interface.
When the new routing configuration is requested to Zebra
2.0, a set of match/action rules are installed to Lagopus
dataplane dynamically.

Conclusion
It has been a long time since we’ve designed the first ver-
sion of GNU Zebra and there are a lot of things happened
in industry and surrounding environment. Here we have an
opportunity to re-design Zebra, we hope that this is useful to
people who are interested in networking software.

The Zebra 2.0, OpenConfigd and Lagopus integration are
avialable soon.

• Zebra 2.0
https://github.com/hash-set/Zebra-2.0

• OpenConfigd
https://github.com/hash-set/OpenConfigd

• Lagopus
https://lagopus.github.io/

References
[1] Bjorklund, M. 2010. Yang - a data modeling language for

the network configuration protocol (netconf). Technical
report, IETF. ”RFC6020”.

[2] Docker. https://www.docker.com/.
[3] Data plane development kit. http://dpdk.org/.
[4] Foundation, O. N. 2015. Openflow switch specification

version 1.3.5.
[5] Gnu zebra. https://www.gnu.org/software/zebra/.
[6] Lagopus switch: a high performance soft-

ware switch. http://lagopus.github.io/,
https://github.com/lagopus/lagopus.

[7] nginx. http://nginx.org/en/.
[8] node.js. https://nodejs.org/.
[9] Of-dpa: Openflow data plane abstraction.

https://github.com/Broadcom-Switch/of-dpa.
[10] Onos (open network operating system).

http://onosproject.org/.
[11] Openconfig. http://www.openconfig.net/.
[12] OpenDaylight. https://www.opendaylight.org/.
[13] Quagga routing suite. http://www.nongnu.org/quagga/.
[14] Swig: Simplified wrapper and interface generator.

http://www.swig.org.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

