Osmocom kernel-level GTP implementation

Andreas Schultz + Harald Welte

What is GTP / GTP in GPRS

- GTP, the GPRS Tunneling Protocol was first introduced with GPRS, the packet-switched add-on to GSM networks
- *PDP contexts* are sessions with an external packet data network (IP) which provide a tunnel between the phone and that external network
- GTP is used betwen the SGSN and GGSN to tunnel the User-plane (IP) packet data of a PDP Context
- latest definition in (3GPP TS 29.281 version 12.1.0 Release 12)

GTP in UMTS

In UMTS, PDP originally remained between SGSN and GGSN

- With HSPA in later releases (Rel7+), user plane is moved out of SGSN and NodeB generates GTP directly
- hNodeB (femtocell) architecture also originates GTP directly in hNodeB

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

GTP in LTE

- LTE uses GTP at even more interfaces between network elements
- LTE introduces GTP-C Version 2 for control plane, but user plane remains GTP-U v1 like before.
- What used to be the GGSN is now called PDN-GW in LTE

GTP

- control (GTP-C) and user (GTP-U) plane protocol
- UDP based on well known ports (3386, 2152)
- per PDP context/tunnel identifiers (TID)
 - one for each direction(!) in GTP v1
 - is the only identifier for tunnel, not IP/Port tuples!
- support for packet sequnce numbers and reordering

GTP-C

control protocol for:

- exchanging meta data
- assigning parameters to client:
 - IPv4 addresses
 - IPv6 prefixes
 - DNS servers
 - ...
- establishing and removing tunnels
- moving tunnel endpoints to other SGW's

GTP-U

two main jobs:

- per client tunnelling of IP packets
- path maintenance
 - echo requests/replies
 - error reporting

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Problems with Userspace GTP

- Userspace GTP was fine with GPRS speeds
 - Packet rates / bandwidths small compared to routing
- With HSPA and particularly LTE, the world has changed
 - Signalling / Control Plane traffic is very limited
 - User Plane traffic is very high bandwidth

Osmocom kernel-level GTP

- Move bandwidth-critical User Plane into Linux kernel
- Keep Control Plane stays in Userspace (OpenGGSN)
- Use netlink based API to control user plane in kernel
- Started by Harald Welte + Pablo Neira @ sysmocom in 2012
 - unfortunately abandoned due to customer disappearing
- picked up by Andreas Schultz @ travelping in 2015
 - fixed Harald + Pablo's bugs
 - introduce network namespace support

Design

- netlink API built on top of genl
- initialization:
 - create GTP socket in userspace
 - create tun like network interface
 - bind GTP sockets to it
- for each PDP context, user space adds one record
 - IP address assigned to MS for this PDP context
 - TEIDs to identify mobile-originated packets
 - SGSN IP for GTP header of mobile-terminated packets

Design

- netlink API built on top of genl
- all PDP contexts share one tun device
 - one tun device for all subscribers, not one per subscriber

STATUS

- working
 - GTP-U vo and v1 for IPv4 over IPv4
 - multiple tunnels supported
 - only single APN (multiple IP ranges not permited)
- Limitations
 - no IPv6 support
 - no offload support
- existing users (both GPLv2)
 - OpenGGSN (http://cgit.osmocom.org/openggsn/)
 - new ergw Erlang GGSN / P-GW (https://github.com/travelping/ergw)

TODO

- TODO:
 - final round of clean-up, submission for mainline
 - fix or remove IPv6 support
- discussion items:
 - path MTU discovery
 - implications by/for offloading faetures (csum / gso / ...)
- wishlist
 - light-weight tunneling integration

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

The End

Questions?