
UDP Encapsulation in Linux

netdev0.1 Conference
February 16, 2015

Tom Herbert <therbert@google.com>

Topics

● UDP encapsulation
● Common offloads
● Foo over UDP (FOU)
● Generic UDP Encapsulation (GUE)

Basic idea of UDP encap
● Put network packets into UDP payload
● Two general methods

○ No encapsulation header: protocol of packet is
inferred from port number

○ Encapsulation header: extra header between UDP
header and packet. Protocol and other data can be
there. For example:

Data

DataTCPGUE IPETH IP UDP

DataTCPIP

DataTCPGUE IPUDP

VM encap example

Host kernel

Encapsulator

IP

NIC driver

Guest kernel

Application

Encapsulation Decapsulation

4

1

2

3

4

Host kernel

Decapsulator

IP

NIC driver

Guest kernel

Application1

2

3

4

UDP encap popularity

● UDP works with existing HW infrastructure
○ RSS in NICs, ECMP in switches
○ Checksum offload

● Used in nearly all encap, NV data protocols
○ VXLAN, LISP, MPLS, GUE, Geneve, NSH, L2TP

● Likelihood UDP based encapsulation
becomes ubiquitous
○ In time most packets in DC could be UDP!

● Load balancing
● Checksum offload
● Segmentation offload

Offloads

● For ECMP, RSS, LAG port selection
● Probably all switches can 5-tuple over

UDP/IP packets
● Solution: use source port to represent hash

of inner flow
○ ~14 bits of entropy
○ udp_src_flow_port function

Load balancing

● NETIF_HW_CSUM
○ Initialize checksum to pseudo header csum
○ Input to device start and offset
○ HW checksums from start to end of packet and

writes result at offset
● NETIF_IP_CSUM

○ HW can only checksum with certain protocol hdrs
○ Typically UDP/IP and TCP/IP
○ HW handle pseudo hdr csum also

TX Checksum offload

● CHECKSUM_COMPLETE
○ HW returns checksum calculation across whole

packet
○ Host uses returned value to validate checksum(s) in

the packet
● CHECKSUM_UNNECESSARY

○ HW verfies and returns “checksum okay”
○ Protocol specific, HW needs to parse packet
○ csum_level allows HW to checksum within

encapsulation, multiple checksums

RX Checksum offload

● Need to offload inner checksum like TCP
● UDP also has it’s own checksum, this makes

things interesting!

Checksum offload for encapsulation

● Want set to zero for “performance”
(particularly switch vendors), but...

● UDP checksum is required for IPv6, and…
● UDP checksum covers more of packet than

inner checksum, but...
● RFC6935, RFC6936, and a lot more

requirements in encapsulation protocol
drafts to allow it, but…

● UDP checksum is actually a good idea for
both v4 and v6 when you’re using Linux
hosts to do encapsulation, let me explain...

The MIGHTHY UDP Checksum for Encaps

● Probably every deployed NIC supports
simple UDP checksum for TX and RX

● Only new NICs support offload of
encapsulated checksums

● Solution: Enable UDP checksum for encap
and use it to offload inner checksums
○ Receive: checksum-unnecessary conversion
○ Transmit: remote checksum offload

Leveraging UDP checksum offload

● Device returns “checksum unnecessary” for
non-zero outer UDP checksum

● Complete checksum of packet starting from
the UDP header is ~pseudo_hdr_csum

● So convert checksum unnecessary to
checksum complete

● Inner checksum(s) verified using checksum
complete

● No checksum computation on host!

Checksum unnecessary conversion

● Defer TX checksum offload to remote
● Encapsulation header with start and offset

data referring to inner checksum
● Offload outer UDP checksum and send
● At receive

○ Do what device does: determine checksum from
start to end of packet and write to offset

○ Aleady have complete checksum so we can easily
find this

○ Write checksum into packet, validate like normal
● No checksum calculation in host

Remote checksum offload

Segmentation offload

● Stack operates on bigger than MTU sized
packets

● Offloads in receive and transmit

Transmit segmentation offload

● Split big TCP packet into small ones
● GSO (stack), TSO (HW)
● For each created packet

○ Copy headers from big one
○ Adjust lengths, checksums, sequence number that

must be set per packet

GSO for UDP encapsulation

● UDP GSO function calls
skb_udp_tunnel_segment

● Call GSO segment for next layer:
gso_inner_segment

● Adjust UDP length and checksum per packet
● For encapsulation header, just copy those

bytes*

*Assuming encapsulation header does not have fields that must be set per
packet

Receive segmentation offload

● Build large TCP packet from small ones
● GRO operation is to match packets to same

flow for coalesing
● GRO (stack), LRO (HW)

GRO for UDP encapsulation

● UDP GRO receive path (udp_gro_receive)
● Encapsulation specific GRO functions

○ Call GRO function per port
○ Facility to register offloads per port
○ Call GRO receive for next protocol

FOU and GUE

FOU and GUE encapsulating IP

Foo over UDP

● Packets of IP protocol over UDP
● Destination port maps to IP protocol

○ e.g. IP (IPIP), IPv6, (sit), GRE, ESP, etc
○ Example: IPIP on port 5555

FOU support

● Logically, a header inserted to facilitate
transport

● fou.c implements RX.
○ encap_rcv in socket
○ Remove UDP and reinject IP packet as protocol

associated with port
● Ip tunnel implements FOU for IPIP, SIT,

GRE
○ Insert UDP header between IP and payload
○ Source port from flow_hash

FOU example

● Set up receive
 ip fou add port 5555 ipproto 4

● Set up transmit
 ip link add name tun1 type ipip \
 remote 192.168.1.1 \
 local 192.168.1.2 \
 ttl 225 \
 encap fou \
 encap-sport auto \
 encap-dport 5555

● fou.c implements RX.
○ encap_rcv in socket
○ Remove UDP and reinject IP packet as protocol

associated with port
● Ip tunnel implements FOU for IPIP, SIT,

GRE
○ Insert UDP header between IP and payload
○ Source port from flow_hash

IP in FOU transmit

DataTCPIP

Start with a plain TCP/IP packet sent on tun1

IP in FOU transmit

DataTCPIP

Logically prepend IP header

IP

IP in FOU transmit

DataTCPIP

This is IPIP encapsulation

IP

IP protocol is 4 for IPIP

IP in FOU transmit

DataTCPIPIP

UDP

UDP port set to hassh
value for inner IP/TCP
headers

UDP destination port
set to 5555 for IP/UDP

Insert UDP header

IP in FOU transmit

DataTCPIP

IP packet with encapsulation

IP UDP

IP in FOU transmit

DataTCPIP

Add Ethernet header and send

IP UDPETH

IP in FOU receive

DataTCPIP

Receiver processes UDP packet based on destination
port

IP UDP

IP in FOU receive

DataTCPIP

Remove UDP header

IP

UDP

Adjust transport header
offset in sk_buff

IP in FOU receive

DataTCPIP

Now have original IPIP packet. Reinject this into kernel,
next protocol to prcess is 4

IP

Generic UDP encapsulation (GUE)

● Extensible and generic encapsulation proto
● Encapsulation header for carrying packets of

IP protocol
● Type field, header length, 8 bit IP protocol
● 16 bit flags and optional fields indicated by

them. More can be defined in extension
● Private/extension flag

GUE headers

UDP and GUE headers

GRE/GUE example

● Set up receiver
 ip fou add port 7777 gue

● Set up transmit
 ip link add name tun1 type ipip \
 remote 192.168.1.1 \
 local 192.168.1.2 \
 ttl 225 \
 encap gue \
 encap-sport auto \
 encap-dport 7777 \
 encap-udp-csum \
 encap-remcsum

GRE in GUE transmit

IPv4 packet

Application sends packet on tun1

GRE in GUE transmit

IPv4 packet

Logically prepend IP header for GRE/IP tunneling

IP GRE

GRE in GUE transmit

IPv4 packet

Insert UDP/GUE headers

GRE

UDP GUE

IP

Next protocol is 47 for
GRE

UDP destination port
set to 7777 for GUE

GRE in GUE transmit

IPv4 packet

Insert UDP/GUE headers

GREUDP GUEIP

GRE in GUE transmit

IPv4 packet

Add Ethernet and IP headers and send

GREUDP GUEIPETH

GRE in GUE receive

IPv4 packet

Process packet based on UDP port (GUE port)

GREUDP GUEIP

GRE in GUE receive

IPv4 packet

Remove UDP/GUE headers

GRE

UDP GUE

IP

Adjust transport header offset
in sk_buff

GRE in GUE receive

IPv4 packet

Now have original GRE/IP packet. Reinject this into
kernel, next protocol to prcess is 47 (GRE)

GREIP

Thanks, and looking forward

● Good support for UDP encapsulation is the
result of a broad community effort

● Still a lot of intersting work to do in security,
control, and performance

