
MLAG on Linux - Lessons
Learned

Scott Emery, Wilson Kok
Cumulus Networks Inc.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Agenda

● MLAG introduction and use cases
● Lessons learned
● MLAG control plane model
● MLAG data plane
● Linux kernel requirements
● Other important changes and considerations

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MLAG introduction

MLAG - a LAG across more than one node
● multi-homing for redundancy
● active-active to utilize all links which

otherwise may get blocked by Spanning
Tree

● no modification of LAG partner
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MLAG terminology
ISL - inter switch link

Dually connected Singly connected

Secondary rolePrimary role

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MLAG use case - hypervisor

kernel

eth0

virtual switch

eth1

kernel

eth0

virtual switch

eth1

no MLAG - striping by VM MACs
or other policies

vm

MLAG - it’s a bond

switch switch switch switch
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MLAG use case - L2 fabric
● no blocking links, full

utilization of bandwidth
● load balancing and

redundancy offered by LAG

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MLAG use case - L2 fabric
● no blocking links, full

utilization of bandwidth
● load balancing and

redundancy offered by LAG

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Lessons learned
● L2 can be dangerous! Fail open by default,

no TTL, unknown means flood...
● MLAG - more ways to live dangerously
● Rigorous and conservative interface state

management needed. Temporary loops or
duplicates not acceptable

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Lessons learned
● Fast convergence depends on a lot of things done right:

○ Proper daemon up/down sequences:
■ UP: STPd up > MLAGd up > interface enable
■ DOWN: interface disable > MLAGd down > STPd down

○ Avoid split brain as much as possible:
■ changing LACP system id flaps bonds
■ have multiple heart beat channels between MLAG daemons

● Failures, besides link and node down, do happen,
should not melt network. e.g. daemon crash
○ Need to fail close, e.g. monit clean up

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MLAG control plane model

● Linux kernel enforces default interface state on
MLAG enabled interfaces

● User space MLAG daemon maintains MLAG
configuration, controls the formation of MLAG
and updates interface state and data path

● Analogous to the user space Spanning Tree
model

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MLAG data plane
● L2 must never have loops, redundant

paths are blocked
● But want to utilize all links, cannot

block
Answer…..
● Make the links appear logically the

same for the protocols that are
supposed to protect you!

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MLAG data plane rules
● same packet is not delivered to a node more

than once
● packet sourced from a dually connected node

is not delivered back to the same node
This means packets crossing the ISL and
destined to:
● dually-connected links => drop
● singly-connected links => forward

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Minimum Linux kernel requirements

● ability to set LACP system ID on bond
independent of bond mac address

● mlag_enable attribute on bond
● mechanism to keep member interface carrier

down independent of admin state
○ IFF_PROTO_DOWN

● duplicate filtering of packets crossing the ISL
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Interface bring up
● user enables an mlag (bond with mlag_enable = 1)

○ bonding driver keeps the bond and all its slaves down
● MLAG daemon puts bond in dormant interface mode to begin
● when MLAG daemon peering is complete

○ sets mlag LACP system id on bond (802.3ad mode)
○ brings slaves up
○ LACP can run, no data traffic
○ LACP converges, bond moves from oper down to oper

dormant
● MLAG daemon verifies MLAG membership, installs egress

filter, then sets bond to oper up
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Split brain handling
● MLAG daemon pair cannot talk to each other

○ ISL down but MLAG daemons alive
● MLAG daemon with secondary role keeps all MLAGs in

down state with IFF_PROTO_DOWN

● IFF_PROTO_DOWN indicates to
kernel to not bring bond slaves carrier
up until it is cleared

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Duplicate Filtering
Packet ingress on ISL should only egress on singly connected links
● use ebtables: -i <ISL> -o <dually connected interface> -j DROP
● rule MUST be installed before dually connected interface is oper up
● rule MUST be uninstalled as soon as interface becomes singly connected

One rule per dually connected interface, not scalable, especially in the case of
non VLAN-aware bridge model with many bridges and many VLANs. Better if:
● ebtables can filter on the parent interface, e.g. eth1 instead of eth1.100,

eth1.101, eth1.102….
● or bridge driver can make use of the knowledge of which link is ISL and

which are dual-connected
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Possible other Linux kernel requirements

● interface attribute to indicate ISL
● knowledge of the ‘dual-connectedness’ of a link
● knowledge of mlag id of interfaces
● bridge filtering modifications based upon above

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Other important changes and considerations

● Spanning Tree changes
● MAC address management
● IGMP group membership handling
● MLAG control traffic treatment

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Spanning Tree Changes
● STP daemon connects to MLAG daemon and learns

○ which is ISL
○ singly/dually connected interfaces and their MLAG id
○ when MLAG peering is up or down

● STP needs to run as if the two switches are one. Multiple approaches
possible:
○ master STP daemon runs the protocol and maintains full state sync

with the slave STP daemon
or
○ each STP daemon does independent calculation. Loosely coupled,

distributed processing
● Loosely coupled model is simpler and more scalableProceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Spanning Tree - Loosely coupled model

● use common bridge id (MLAG system id) when
generating BPDUs

● only MLAG primary switch sends BPDU on dually-
connected links

● both MLAG switches send BPDU on singly-connected
links

● BPDU received on root port is processed and also
relayed across ISL, replace source MAC with MLAG id

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MAC address management
Goals
● reduce unknown flood
● eliminate constant MAC moves between ISL and MLAG

Solution
● disable learning on ISL
● synchronize MAC addresses

○ install address learned on MLAG on one side to corresponding
MLAG on the other side

○ install address learned on singly connected link on ISL on other
side

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

IGMP Snooping
MLAG daemons synchronize between themselves:
● IGMP group membership for dually connected links
● mrouter port information
● reports/queries may need to be flooded, the same duplicate

filtering rule applies

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

MLAG control traffic

control traffic share the ISL with data traffic,
needs to be
● given higher priority
● independent of data traffic topology change -

use a separate VLAN device on the ISL
which is not bridged

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

While we’re at it...
● VLAN-aware bridge driver

○ great enhancement!
○ more work needed

■ scalability: vlan range*, per port per vlan local fdb*
■ usability: limited to single STP instance, per bridge igmp

snooping control
● Bonding driver

○ a few issues with slave active state setting and MUX machine
transitions*

(*patches submitted upstream)
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Thank You!

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

