System/Networking performance
analytics with perf

Hannes Frederic Sowa
<hannes@stressinduktion.org>

Prerequisites

e Recent Linux Kernel

- CONFIG_PERF *
- CONFIG_DEBUG_INFO

e Fedora:

— debuginfo-install kernel for vmlinux
- Dwarves package for pahole

Debuginfo

e BuildID is mostly a SHA-1 checksum which
gets placed into its own ELF section

 Mapping from buildid to binary via
fusr/lib/debug/.build-1d/XX/XXXXXXXXXXX

or
~/.debug/.build-1d/XX/XXXXXXXXXX

Basic usage of perf

perf top

perf stat
— count events happening during specific workload
perf record

- generate perf.data file in current directory with samples of
the measurements

Event descriptor

- use 'perf list' to view possible events
- perf evlist extracts perf events from perf.data

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

perf trace

 Live tracing

- Replacement of strace

- Much higher performance, as we don't need to do
multiple kernel < user space transitions anymore

- Like strace:
« perf trace -e read,write <program>

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Analyzing data

* perf report

- GUI to browse, inspect and annotate samples
- Can inspect call graphs

* perf script

- Without arguments presents easy to grep data

- Can later on be used to process perf data with perl or
python

* perf annotate
- Source listing with annotated performance profiles

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Transferring perf data

» perf archive perf.data
Now please run:

$ tar xvf perf.data.tar.bz2 -C ~/.debug

wherever you need to run 'perf report' on.

lroot access to perf

 /proc/sys/kernel/perf _event_paranoid:

The perf_event_paranoid file can be set to restrict access to the
performance counters.

only allow user-space measurements.
1 allow both kernel and user measurements (default).

allow access to CPU-specific data but not raw tracepoint
samples.

-1 no restrictions.
e echo -1 > /proc/sys/kernel/perf_event_ paranoid

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Reasoning about performance

» Algorithmic » Memory access
complexity behaviour
- Parallelism

- Cross cpu Memory access

« Assumptions on Raw Instruction
networking traffic throughput
- Caching - e.g. CPI (cycles per

- Fast paths Instructoin)

perf _event _open

« open fd to measure one particular event
- Sampling
« Data mostly gathered via mmap
- Counting
« Data mostly gathered via read

* Event types are either

- Hardware (cycles, instructions, ...)

- Software (cpu clock, context switches)
- Integration into tracing

- Caching events

- Raw

- Breakpoint events

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Hardware events

» perf list hw

- Sampling based on counters or frequency

e -C specifies period to sample
* -F specifies the frequency

» perf evlist -v shows details about the perf _event_attr, like
sample_freq

 Event/ Interrupt is triggered and a sample is
captured

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Reasoning about performance

 Algorithmic » Memory access
complexity behaviour
- Parallelism

- Cross cpu Memory access

« Assumptions on Raw Instruction
networking traffic throughput
- Caching - e.g. CPI (cycles per

- Fast paths Instructoin)

Algorithmic complexity

* How can perf help?

Find given workload or benchmark

Can easily pinpointed by perf top or simple cycle counting in the kernel:
» cycles:kpp

- k enables kernel only counting (u for user space)
- Additional p modifier change precise level

* Intel: PEBS — Precise Event Based Sampling
* AMD: IBS - Instruction Based Sampling

» perf top -e cycles:kpp
If the region of code is identified proceed with analyzing the source

Pinpointing additional recurrences with perf can help, too (see “Assumptions on networking traffic”)
» Mostly needs to be solved by enhancing the algorithms / code
- e.g. fib trie neatening
» Find best and worse case and optimize accordingly
» Sometimes can be worked around by caching
- See section on Assumptions on networking traffic / patterns

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Reasoning about performance

» Algorithmic « Memory access behavior
complexity - Parallelism
- Cross cpu Memory
aCCesSS
« Assumptions on Raw Instruction
networking traffic throughput
- Caching - e.g. CPI (cycles per

- Fast paths Instructoin)

Memory access behavior

Eric Dumazet's mix4 memory access
optimizations:

+ [* fetch ring->cons far ahead before needing it to avoid stall */

+ ring_cons = ACCESS_ONCE(ring->cons);

+ [* we want to dirty this cache line once */
+ ACCESS_ONCE(ring->last_nr_txbb) = last_nr_txbb;
+ ACCESS_ONCE(ring->cons) = ring_cons + txbbs_skipped;

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Memory access behavior |l

 Compilers do not tend to optimize memory
access in e.g. large functions and optimize for
CPU cache behavior

 Manual guidance is often needed

- Pacing memory access across functions to allow
CPU to access memory more parallel

- Avoid RMW Instructions

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Memory access behavior Il -
struct ordering

* Code which access large structures tend to write to multiple
cache lines

* Group members of structs so that specific code has to touch
the least amount of cache lines

 Critical Word First / Early Restart

- CPUs tend to read complete cache lines

- Early Restart signals the CPU that data is available before complete
cache line is read

— Critical Word First allows the CPU to fetch the wanted data, even it is
In the end of a cache line

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Memory access behavior IV

* How can perf help?

perf list cache
L1-dcache-loads
L1-dcache-load-misses
L1-dcache-stores
L1-dcache-store-misses
L1-dcache-prefetch-misses
L1-icache-load-misses
LLC-loads
LLC-stores
LLC-prefetches
dTLB-loads
dTLB-load-misses
dTLB-stores
dTLB-store-misses
iITLB-loads
ITLB-load-misses
branch-loads
branch-load-misses

[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]
[Hardware cache event]

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Memory access behavior V

* perf mem record <workload>

* perf mem report

- uses 'cpu/mem-loads/pp' event by default
- perf mem -t store record switches to ‘cpu/mem-stores/pp'

 (those kinds of events aren't documented properly:
basically you can find them iIn
/sys/devices/cpu/events)

roceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Analyzing lock behaviour

* Needs kernel compiled with lockdep

- perf lock record <workload>
- Perf lock report

Raw counters

* Andi Kleen's pmu-utils test suite
* https://github.com/andikleen/pmu-tools
» Offcore events

e On AMD these are available via

perf record -e amd_nb/

https://github.com/andikleen/pmu-tools

Reasoning about performance

» Algorithmic » Memory access
complexity behaviour
- Parallelism

- Cross cpu Memory access

e Assumptions on « Raw Instruction
networking traffic throughput
- Caching - e.g. CPI (cycles per
- Fast paths Instructoin)

Assumptions on networking traffic

* Examples:

- xmit_more finally allows the kernel to achieve line
rate speeds but the feature must be triggered

- Receive offloading needs to see packet trains to
aggregate sk_buffs

- Routing caches should not be evicted on every
orocessed data frame

- Flow-sensitive packet steering should not cause
Increased cross-CPU memory traffic

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Kprobes arguments

GRP . Group name. If omitted, use "kprobes" for it.

EVENT . Event name. If omitted, the event name is generated
based on SYM+offs or MEMADDR.

MOD : Module name which has given SYM.

SYM[+offs] : Symbol+offset where the probe is inserted.

MEMADDR . Address where the probe is inserted.

FETCHARGS : Arguments. Each probe can have up to 128 args.

%REG . Fetch register REG

@ADDR . Fetch memory at ADDR (ADDR should be in kernel)

@SYM[+|-offs] : Fetch memory at SYM +|- offs (SYM should be a data symbol)
$stackN : Fetch Nth entry of stack (N >= 0)
$stack . Fetch stack address.
Sretval . Fetch return value.(*)
+|-offs(FETCHARG) : Fetch memory at FETCHARG +|- offs address.(**)
NAME=FETCHARG : Set NAME as the argument name of FETCHARG.
FETCHARG:TYPE : Set TYPE as the type of FETCHARG. Currently, basic types
(u8/ul6/u32/u64/s8/s16/s32/s64), "string" and bitfield
are supported.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Examples to pinpoint Xxmit_ more

« Find an applicable function candidate, guess:
- perf probe -F —filter dev*xmit*

* We need to get hold on to the xmit_more flag:
- perf probe -L dev_hard_start_xmit

 Which variables are available at that location?
- perf probe -V dev_hard_start xmit:17

 Finally adding the probe point:

- perf probe -a 'dhsx=dev_hard_start xmit:17 ifname=dev->name:string xmit_more=next'

 Record test and view results:

- perf record -e probe:* -aRg <workload>
- perf script -G

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Examples to pinpoint xmit._more ||

« Example for use with modules:

- perf probe -v-m\
/usr/lib/debug/lib/modules/3.18.5-201.fc21.x86_64/kernel/net/mac80211/mac80211.ko.debug \
-a 'ieee80211 xmit ifname=skb->dev->name:string xmit_more=skb->xmit_more'

* Return value probing

- perf probe -a 'dev_hard_start_xmit%return retval=%retval’

» User space probing works, too:
- debuginfo-install <binary>
— perf probe -x <binary> should give same results

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Gotchas

* Lot's of inlining:
- noinline define in kernel or __attribute__ ((noinline))

- Sometimes needs a bit more code rearrangement

* move code out of header
* noninline per-object file wrapper
« EXPORT_SYMBOL

« Add volatile variables to ease access to certain data

- Can also be achieved via registers
perf probe -a 'dev_hard_start_xmit+332 ifname=dev->name:string more txq'
Failed to find the location of more at this address.
Perhaps, it has been optimized out.
Error: Failed to add events.

Narf! So...
- perf probe -a 'napi_gro_complete ifindex=skb->dev->name:string gro_count=+0x3c(%di):ul6’
results in:
perf script
irg/30-iwlwifi 498 [000] 6462.790978: probe:napi_gro_complete: (ffffffff81649b30) ifindex="wlp3s0" gro_count=0x2
irg/30-iwlwifi 498 [000] 6462.795096: probe:napi_gro_complete: (ffffffff81649b30) ifindex="wlp3s0" gro_count=0x2

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Raw CPU counter

e Tables in CPU manuals

- e.g. cpu/event=xx,umask=xx/flags
- /sys/bus/event_source/devices/<...>

e Raw events: r<event><umask>

* Look up AMD manual to trace amd northbridge events
with -e 'amd_nb/event=0xxx,umask=0xxxx/flags'

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Routing cache expunge

* print &init_net.ipv6.fib6_sernum
- — Oxffffffff81flasec

» perf record -e \mem:Oxffffffff81fla5ec:rw ip -6
route add 2002::/64 dev lo

perf script

 Sample scripts available
- perf script -

* Generate script based on perf.data file
- perf script -g perl/python

* Run script on perf.data file
- perf script -s

Reasoning about performance

» Algorithmic » Memory access
complexity behaviour
- Parallelism

- Cross cpu Memory access

« Assumptions on * Raw instruction
networking traffic throughput
- Caching - e.g. CPI (cycles per
- Fast paths Instructoin)

Raw Instruction throughput

Mostly compiler and architecture dependent

Often marginal effects in performance improvement
- Still, hot code can benefit a lot, e.g. crypto, hashing

CPI cycles per instruction should be increased
Mostly dependent on memory accesses

Open up missed-optimization in gcc bugzilla?
Architecture specific inline assembly?

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Optimizing Iinstruction throughput

« Balance code size (L1i cache pressure) vs. improvement

- Performance decrease in other code possible
- Even not related at all to the optimized code

* Mostly case by case optimizations, but some help of tools
IS possible

* If needed, provide assembly implementation but add
__builtin_constant_p wrappers so gcc can still do constant
folding If possible

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Backup: Intel® Architecture Code
Analyzer

Intel® Architecture Code Analyzer

Static analyzer on assembly code

Allows to analyze code for smaller functions in regard to CPU port
exhaustion, stalls and latency

- Reordering instructions

- Picking different ones / missing optimization in compiler?

Does not model memory access

Some instructions cannot being modeled correctly, e.g. div

Markers mark beginning and end of section to be analyzed:
.byte OxOF, 0x0OB movl $222, %ebx
movl $111, %ebx .byte 0x64, 0x67, 0x90
Joyte 0x64, 0x67, 0x90 .byte OxOF, Ox0B

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Intel® Architecture Code Analyzer ||

 Throughput mode (-analysis THROUGHPUT):

Throughput Analysis Report

Block Throughput: 18.00 Cycles Throughput Bottleneck: Portl

Port Binding In Cycles Per Iteration:

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Intel® Architecture Code Analyzer Il

| Num Of | Ports pressure in cycles |
. | Uops | 6 -DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 | |
- e | | | | | | | | | mov rax, rdx
. | 1 | 0.7 | | | | | | 0.3 | | | cmp rsi, 0x40
- | eF] | | | | | | | | | jb 0x4b
. | 1 | 0.3 | | | | | 0.3 | 0.3 | | | sub rsi, 0x40
. | 1 | 0.3 | | | | | 6.3 | 0.3 | | | sub rsi, 0x40
. | 2" | | 1.0 | 1.0 1.0 | | | | | | CP | crc32 rax, gword ptr [rdi]
. | 2" | | 1.0 | | 1.0 1.0 | | | | | CP | crc32 rax, qword ptr [rdi+0x8]
. | 2" | | 1.0 | 1.0 1.0 | | | | | | CP | crc32 rax, qword ptr [rdi+0x10]

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Intel® Architecture Code Analyzer

» Latency Mode (-analysis LATENCY):

Latency Analysis Report

Latency: 60 Cycles

[...]

|3 | | | | | | | | | | | sub rsi, 0x40

|4 | | | | | | | | | | | sub rsi, 0x40

| 5 | | | | | | | | | 1 | CP | crc32 rax, gqword ptr [rdi]

| 6 | | | | | | | | | 1 | CP | crc32 rax, qword ptr [rdi+0x8]
| 7 | | | 1 | | | | | | 1 | CP | crc32 rax, qword ptr [rdi+0x10]
| 8 | | | | 1 | | | | | 1 | CP | crc32 rax, gword ptr [rdi+0x18]
| 9 | | | 1 | | | | | | 2 | CP | crc32 rax, qword ptr [rdi+0x20]

. Reports resource conflicts on critical paths (CP) and list of delays
Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Intel® Architecture Code Analyzer Il

0. mov rax, rdx 44. lea rdi, ptr [rdi+0x2] 42. sub rsi, Ox2

v S
5. cre32 rax, gword ptr [rdi] 1. cmp rsi, Ox40 3. sub rsi, Ox40 45. cmp rsi, Ox1
3 ' \ v
6. cre32 rax, gword ptr [rdi+0x8] 2. jb Ox4b 4. sub rsi, 0x40 46. jb Ox7
7. cre32 rax, gword ptr [rdi+0x10] 15. add rsi, Ox40 14. jnb OXfFffffrefeffc
8. cre32 rax, qword ptr [rdi+0x18] 18. sub rsi, 0x20 16. cmp rsi, 0x20
9. cre32 rax, gword ptr [rdi+0x20] 26. sub rsi, 0x10 24. cmp rsi, 0x10 17. jb Ox25
10. crc32 rax, qword ptr [rdi+0x28] 32. sub rsi, Ox8 30. cmp rsi, 0x8 25.jb 0x17
11. cre32 rax, qword ptr [rdi+0x30] 37. sub rsi, Ox4 35. cmp rsi, Ox4 31.jb 0x10
y v '
13. lea rdi, ptr [rdi+0x40] 12. cre32 rax, gword ptr [rdi+0x38] 40. cmp rsi, 0x2 36. jb Oxf
19. cre32 rax, gword ptr [rdi] 41. jb 0x10

/

20. cre32 rax, gword ptr [rdi+0x8]

Y

21. cre32 rax, gword ptr [rdi+0x10]

e

23. lea rdi, ptr [rdi+0x20] 22. cre32 rax, gword ptr [rdi+0x 18]

\ /

27. cre32 rax, gword ptr [rdi]

/

28. cre32 rax, gword ptr [rdi+0x8] 29. lea rdi, ptr [rdi+0x10]
33. cre32 rax, gqword ptr [rdi] 34. lea rdi, ptr [rdi+0x8]
38. cre32 eax, dword ptr [rdi] 39. lea rdi, ptr [rdi+O0x4]

TT——

43. cre32 eax, word ptr [rdi]

Proceedings ofn?(ri?‘v 0.1, 14-17, 2015, Ottawa, On, Canada

47. cre32 eax, byte ptr [rdi]

Thanks!

Questions?

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

