
UDP Encapsulation in Linux

Tom Herbert

Google
USA

therbert@google.com

Abstract
UDP encapsulation encompasses the techniques and protocols to
encapsulate and decapsulate networking packets of various
protocols inside UDP. UDP encapsulation has become prevalent
in data centers, and in fact nearly all the solutions for network
virtualization currently being proposed in IETF are based on UDP
encapsulation.

In this paper we present much of the recent work done by the
Linux networking community to make UDP encapsulation a first
class citizen. This cumulative work has resulted in greatly
improved performance, robustness, and scalability. We begin by
describing the basic support and model for UDP encapsulation.
Next, we look at performance enhancements in the areas of load
balancing, checksum offload, and segmentation offload. Finally,
we examine two generic methods of UDP encapsulation: Foo-
over-UDP and Generic UDP Encapsulation.

Keywords
UDP, encapsulation, Linux, GRO, GSO, checksum, GUE, FOU

Introduction
UDP encapsulation is becoming ubiquitous in data centers,
not just for virtualization use cases, but also for
non-virtualization. The reason for this is simple: it is a low
overhead protocol that allows several UDP specific
optimizations commonly supported by networking
hardware to be leveraged. UDP is a very simple and
flexible transport protocol that offers a great deal of
interoperability and compatibility with legacy hardware.

In this paper we focus on the recent work done in the
Linux networking stack to support UDP encapsulation.
First, we describe the basics of UDP encapsulation and its
support in Linux. Secondly, we discuss use of common
networking optimizations with UDP encapsulation for load
balancing, checksum offload, and segmentation offload.
We present novel techniques of source port flow
identifiers, checksum-unnecessary conversion, and remote
checksum offload. Finally, we examine support for some
specific UDP encapsulation methods; in particular we look
at Foo-over-UDP (FOU) and Generic UDP Encapsulation
(GUE). FOU provides the simplest no frills model of UDP
encapsulation, it simply encapsulates packets directly in
the UDP payload. GUE is a generic and extensible
encapsulation, it allows encapsulation of packets for any IP
protocol and optional data as part of the encapsulation.

Basics of UDP encapsulation
Encapsulation is the technique of adding network headers
to a fully formed packet for the purposes of transit across a
network. UDP encapsulation includes the techniques and
protocols to encapsulate networking packets within User
Datagram Protocol [1]. Packets are contained in the UDP
payload, and are said to be encapsulated in UDP packets.

Tunneling, overlay networks, and network virtualization,
are terms often associated with encapsulation. Tunneling
refers to the use of a high level transport service to carry
packets or messages from another service. Encapsulation is
often the lower level mechanism that implements a tunnel.
An overlay network is a computer network which is built
on the top of another network. An overlay network may
be composed of links which are implemented by
tunneling. Network virtualization creates logical, virtual
networks that are decoupled from the underlying network
hardware. A virtual network is often implemented as an
overlay network which provides the illusion of being a
physical network to the user.

Encapsulation does not require UDP, in fact there are
several methods for encapsulation of packets within IP not
using UDP; these include IPIP (IP over IP), SIT (IPv6 over
IPv4), GRE (Generic Routing Encapsulation), L2TP
(Layer Two Tunneling Protocol) and EtherIP (Ethernet
over IP) [2,3,4,5,6]. However, encapsulating using UDP
provides some distinct advantages:

• Hardware optimizations for scaling, such as RSS
(Receive Side Scaling) and ECMP (Equal Cost
Multipath) routing, can be leveraged. These can
provide significant performance benefits.

• The UDP checksum provides protection against
packet mis-delivery. This especially relevant if a
packet is being encapsulated in IPv6 which does
not include a header checksum.

• Hardware support for UDP checksum can be
leveraged. NIC support for UDP checksum
offload is ubiquitous and can be used to offload
inner checksum calculation.

• The destination UDP port provides a demux for
different encapsulation methods or encapsulation
protocols.

• UDP allows extensible encapsulation protocols.
For instance, some proposed protocols include
sending optional data with encapsulated packets.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Model of UDP Encapsulation
Conceptually, UDP encapsulation is simple. Encapsulation
is performed by an encapsulator. An encapsulator starts
with a packet which could be for layer 2, layer 3, or layer
4. IP and UDP headers are prepended to the packet. The IP
header addresses the endpoints of the encapsulation, the
destination being the node that will perform decapsulation.
The destination port of the UDP header is set to a specific
port number for the encapsulation method. An additional
encapsulation header may be inserted after the UDP header
which can indicate the protocol of the encapsulated packet
or other data related to the encapsulation. Once the
encapsulated packet is created it is transmitted to the
destination IP address.

At the destination of the encapsulated packet a
decapsulator performs decapsulation. This involves
verifying and removing the IP and UDP headers as well as
any additional encapsulation headers. After removing these
headers, the resultant packet is now the same one that was
originally encapsulated. This packet is then processed by
the networking stack based on its protocol.

In an encapsulated packet, the encapsulating headers are
known as outer headers. The headers of the encapsulated
packet are known as inner headers.

Figure 1 illustrates UDP encapsulation being used to
create tunnels for network virtualization.

Figure 1. UDP and GUE encapsulation for network virtualization.
The diagram at the top illustrates the flow of a packet from an
application in one Virtual Machine (VM) to a peer application in
another VM on another host. The bottom portion shows the
packet encapsulations and protocol headers for the various
protocol layers.

UDP Encapsulation Support in Linux
The Linux stack includes various facilities for supporting
UDP encapsulation. An encapsulation method is usually
implemented as part of a specialized kernel module.

Method specific configuration specifies use and parameters
of encapsulation for transmit as well as receive including
the UDP port number for the encapsulation. In the case that
UDP encapsulation is being used for implementing
network tunnels (i.e. encapsulation of Layer 2 or Layer 3
packets) configuration includes the source and destination
addresses of the tunnel endpoints which are set in the outer
IP header.

The facilities and APIs described in this paper are based
on the 3.18 version of Linux unless otherwise noted [7].
Encapsulated packet representation. In the Linux kernel,
control information and data pointers for a packet are
contained in the sk_buff data structure [8]. Components
of an encapsulated packet are represented by fields in the
sk_buff structure. The sk_buff has references to both
the outer headers and inner headers of encapsulation.

The fields for the outer headers are also just references to
the headers of a packet without encapsulation. These are:

transport_header
 Transport layer header
network_header
 Network layer header
mac_header
 Link layer header

The fields referring to the inner headers of an
encapsulated packet are:

inner_protocol
 Protocol of encapsulated packet
inner_transport_header
 Inner transport layer header
inner_network_header
 Inner network layer header
inner_mac_header
 Inner link layer header

The inner header fields are only valid if the
encapsulation bit is set in an sk_buff, and they are
only relevant in the transmit path. In the case of multiple
nested encapsulations, the outer header fields always refer
to the outermost headers, and the inner header fields refer
to the innermost headers. Note that the number of nested
encapsulations in a packet is only bounded by the MTU
(maximum size of a packet), however some kernel
mechanisms are optimized to handle up to three nested
encapsulations.
Receive path. To implement the receive path, an
implementation creates an in-kernel UDP socket and binds
the local port to the port number specified for
encapsulation. The Linux stack defines an encap_rcv
function for sockets which is set by an encapsulation
method to receive packets. When encap_rcv is set, the
UDP layer calls this function in lieu of normal receive
processing for a socket. Up to the point that the

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

encap_rcv function is called, the UDP stack processes
packets with encapsulation no differently than other UDP
packets; this includes validating the UDP headers and
verifying the UDP checksum.
Transmit path. On the transmit side, an encapsulation
method builds encapsulated packets. This typically entails
prepending a UDP header and encapsulation header if
needed to the packet being encapsulated. Helper functions
are called to set the UDP source port and initialize the
UDP checksum field. The assembled packet is then sent
using the IP packet transmit functions. Note that the
transmit path does not require a socket as the receive side
does, and there is no required relationship between the
send and receive paths.

 Offload mechanisms
Much of the work in enhancing the Linux stack to support
UDP encapsulation is focused on making existing offload
mechanisms “encapsulation aware”. Offload mechanisms
are techniques that are implemented separately from the
normal protocol implementation of the stack and are
intended to optimize or speed up protocol processing.
Hardware offload is performed within a NIC device on
behalf of a host. Software offload mechanisms are
implemented in a lower layer than protocol processing,
typically near or in NIC drivers.

There are thee basic offload techniques of interest:
• Load balancing
• Checksum offload
• Segmentation offload

Load Balancing
Both networking hardware and software stacks implement
a variety of mechanisms to perform load balancing
(statistical multiplexing) of packets across a set of
networking resources. Switches often implement Equal
Cost Multipath routing (ECMP) which distributes packets
over multiple network paths to improve utilization [9].
Most Network Interface Cards (NICs) implement Receive
Side Scaling (RSS) which is a technique to distribute
packets over a number of receive queues to promote
parallelism and reduce latency in host processing [10].
The Linux stack implements Receive Packet Steering
(RPS) which is a software analogue for RSS, and Receive
Flow Steering (RFS) which steers packets to the CPU
where they are being received by an application [11]. In
most cases, load balancing is done at the granularity of
packet flows. A flow is a sequence of packets that belong
to the same the logical communication happening between
a pair of hosts (packets for a TCP connection for instance).
Usually, the packets for a flow should follow the same path
through load balancing mechanisms so that they are
delivered in order.

Hardware devices commonly perform hash computations
on packet headers to classify packets into flows or flow
buckets. Packets are classified into flows by computing a

flow hash. Flow hashes are usually either a three-tuple hash
over the source address, destination address, and protocol
number; or a five-tuple hash over the source address,
destination address, source port, destination port, and
protocol number. Some devices and the Linux stack in its
flow hash calculation (skb_get_hash) omit the protocol
number to produce a two-tuple or four-tuple hash which
doesn't appreciably reduce the quality of the flow hash
value. Typically, networking hardware will compute five-
tuple hashes for TCP and UDP, but only three-tuple hashes
for other protocols. Since the five-tuple hash provides
more granularity, load balancing can be finer grained with
better distribution.

In the case of UDP encapsulation, the computed flow
hash of a packet should be representative of the flow for
the encapsulated packet. To provide for this, the source
port of the outer UDP header can be set to a value that
maps to the inner flow. This is referred to as the inner flow
identifier. The inner flow identifier is set by the
encapsulator; it can be computed on the fly based on
packet contents or retrieved from state maintained for the
inner flow. A device that computes the flow hash of a UDP
packet will include the source port in its calculation, so in
turn the flow hash will correspond to the inner flow.

Examples of deriving an inner flow identifier are:
• If the encapsulated packet is a layer 4 packet,

TCP/IPv4 for instance, the inner flow identifier
could be based on the canonical five-tuple hash
of the inner packet.

• If the encapsulated packet is an AH (IPsec
Authentication Header) transport mode packet
with TCP as next header, the inner flow identifier
could be based on the two-tuple hash of the
source and destination TCP ports.

• If a node is encrypting a packet using ESP (IPsec
Encapsulating Security Payload) tunnel mode,
the inner flow identifier could be based on the
contents of clear-text packet. For instance, a
canonical five-tuple hash for a TCP/IP packet
could be used.

The five-tuple hash commonly used to identify a flow in
UDP will cover the outer source address, destination
address, source port (inner flow identifier), and destination
port. These values are expected to be mostly persistent for
the lifetime of an encapsulated flow, only changing
infrequently (at most once every thirty seconds).
NIC support for UDP hash. Most NICs that support UDP
flow hash calculation (for UDP RSS) disable it by default.
This was done to ensure that fragments of a UDP packet
are received in order when using RSS. If a UDP packet is
fragmented, a five-tuple hash can only be calculated for the
first fragment which contains the UDP headers. For the rest
of the fragments, only a three-tuple hash can be procured.
In UDP encapsulation, fragmentation of the outer UDP
packet is avoided so a five-tuple hash should always be
calculable.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

The UDP flow hash in the NIC should be enabled to
optimize for UDP encapsulation. This can be done per
device using the ethtool command [12]. For example:

ethtool -N eth0 rx-flow-hash udp4 sdfn

This command configures the NIC device for eth0 to
include the UDP ports and IP addresses when computing
the flow hash for UDP over IPv4 packets.
Function to set UDP source port for encapsulation. In
the Linux stack a common function is called to create a
source port value for UDP encapsulation [13]. This
function is:

be16 udp_flow_src_port(struct net *net,
 struct sk_buff *skb,
 in mint, int max, bool use_eth)

This function returns a hash value for the packet passed
in the sk_buff (before encapsulation). The value is
limited to the range provided by the min and max
arguments. By default (when min and max are zero) the
range for the return value is the local port range in the
system which defaults to the ephemeral port range 32768
to 65535. skb_get_hash is called to determine the flow
hash for the packet. If a flow hash has already been set in
the sk_buff (hash field is nonzero) that value is used,
else the packet will be parsed to determine the flow hash
(skb_flow_dissect function is called).
Flow label in IPv6. An alternative to setting the UDP
source port with a flow identifier is to set the IPv6 flow
label to correspond to the inner flow [14]. Some devices
may be configured to use the flow label in hash
computation, and the Linux stack will compute a flow hash
using flow label and the IP addresses of a received packet
if the flow label is non-zero.

A common function exists to create a flow label for
transmit based on a packet's flow hash [15]:

be32 ip6_make_flowlabel(
 struct net *net, struct sk_buff *skb
 be32 flowlabel,bool autolabel)

If autolabel is true, flowlabel is zero, and the
auto_flowlabels IPv6 networking sysctl is set then
skb_get_hash is called to determine the hash for the
flow and it is returned. The caller will mask the value to
twenty bits for setting the IPv6 flow label in a packet.

Checksum offload
IP checksum calculation is known to be an expensive
operation to perform in a host CPU. Most deployed NICs
provide capabilities to offload checksum calculations for
both transmit and receive. If the Linux stack must calculate
a packet checksum, it is done at most once per packet using

simple arithmetic properties of the checksum to validate or
set multiple checksums in a packet as necessary.

When encapsulating using UDP, there are at least two
checksums within a packet to be considered: the checksum
of the encapsulated transport packet and the checksum of
the encapsulating UDP header. For IPv4, the UDP
checksum is optional by setting the checksum field to zero.
For IPv6, the UDP checksum was originally required to be
used, however this is relaxed by RFC6936 which allows
the IPv6 UDP checksum to be zero for UDP tunneling
under certain conditions [16].
Transmit checksum offload. There are two methods of
transmit hardware checksum offload supported by NICS:
NETIF_F_HW_CSUM and NETIF_F_IP_CSUM [8].
NETIF_F_HW_CSUM is a protocol agnostic method to

offload the transmit checksum. In this method the host
provides checksum related parameters in a transmit
descriptor for a packet. These parameters include the
starting offset of data to checksum and the offset in the
packet where the computed checksum is to be written. The
length of data to checksum is implicitly the length of the
packet minus the starting offset. The host initializes the
checksum field to the complement (bitwise not) of the
pseudo header checksum for the transport protocol. In the
case of UDP encapsulation, the checksum for an
encapsulated transport layer packet, a TCP checksum for
instance, can be offloaded by setting the appropriate
checksum parameters. NICs typically can offload only one
transmit checksum per packet, so simultaneously
offloading both an inner transport packet's checksum and
the outer UDP checksum is likely not possible. In that case
setting the UDP checksum to zero and offloading the inner
transport packet checksum might be acceptable.

To request checksum offload, a transport layer sets
checksum related fields in the sk_buff for a packet. The
starting offset for the checksum calculation is set in
csum_start, and the offset where the checksum is to
be written (relative to csum_start) is set in
csum_offset. The checksum status field ip_summed
is set to CHECKSUM_PARTIAL. The checksum field in the
transport header is initialized to the complement of the
pseudo header checksum for the transport protocol.

Many legacy devices implement NETIF_F_IP_CSUM
instead of NETIF_F_HW_CSUM. This is a limited form of
checksum offload where a device can only perform
transmit checksum offload for certain protocol
combinations. Originally, NET_F_IP_CSUM was only
applicable to simple TCP/IP and UDP/IP packets, but some
newer devices have extended this to handle certain
instances of VXLAN or NVGRE encapsulation. Because
NETIF_F_HW_CSUM is protocol agnostic and generic, it
is generally preferred over NETIF_F_IP_CSUM.
Functions to initialize UDP checksum. When building a
packet with UDP encapsulation, an encapsulation method
can call common functions to initialize the UDP checksum
field [17].

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

The function used when encapsulating in IPv4 is:

void udp_set_csum(bool nocheck,
 struct sk_buff *skb, be32 saddr,
 be32 daddr, int len)

The function used when encapsulating within IPv6 is:

void udp6_set_csum(bool nocheck,
 struct sk_buff *skb,
 const struct in6_addr *saddr,
 const struct in6_addr *daddr,
 int len)

skb is the sk_buff for the UDP packet. saddr and
daddr are the source and destination IP addresses. len
is the UDP length which includes eight bytes for the UDP
header and length of the UDP payload.

These functions do one of the following:
• If nocheck is set then zero is written in the UDP

checksum field. UDP checksum is not enabled.
• Else, if the transmit device supports checksum

offload of UDP, then checksum offload is set up
for the UDP checksum.

• Otherwise, the full packet checksum is calculated
and the proper UDP checksum is written in the
UDP checksum field.

Receive checksum offload. Similar to transmit checksum
offload, there are two methods that NICs may implement
for receive checksum offload: CHECKSUM_COMPLETE
and CHECKSUM_UNNECESSARY [8].

 CHECKSUM_COMPLETE is a technique where a NIC
computes the ones complement checksum over all (or
some predefined portion) of a packet. The computed value
is provided to the host in the packet's receive descriptor
and saved in the csum field in the packet's sk_buff. The
host stack uses this checksum to verify any transport
checksums in the packet (both in inner and outer headers).

As a packet is processed by different protocol layers the
saved checksum value is adjusted to correspond to the
packet seen at each protocol layer. Adjusting the checksum
is facilitated by a utility function [18]:

void skb_postpull_rcsum(
 struct sk_buff *skb,
 const void *start, unsigned int len)

This function is called by a protocol layer to adjust the
saved csum before passing the packet to the next layer. It
“subtracts out” the checksum for the current layer's
protocol headers starting from start pointer for len
bytes. For example, in IPv6 skb_postpull_rcsum is
called to subtract out the checksum of the IPv6 header
from the saved checksum value before passing the packet
to transport layer processing. Interestingly, this function is
not called in the IPv4 input processing since it is assumed

that the IPv4 header already has a zero checksum value due
to the use of IPv4 header checksum.

Many legacy NICs don't provide the complete checksum
but instead may explicitly verify checksums within the
packet. The device returns an indication to the host that a
checksum is verified, and the network driver marks the
sk_buff to indicate CHECKSUM_UNNECESSARY. A
device may validate more than one checksum per packet,
for instance the outer UDP checksum in encapsulation and
an inner transport checksum. The csum_level field in
the sk_buff indicates the number of checksums
validated by CHECKSUM_UNNECESSARY (the number
validated is csum_level plus one).
CHECKSUM_UNNECESSARY only works for specific

protocol combinations that a device is capable of parsing.
For instance, if a new encapsulation protocol were created,
a device supporting CHECKSUM_UNNECESSARY might
need to be updated, whereas a device supporting
CHECKSUM_COMPLETE should continue to work without
change. For this reason, CHECKSUM_COMPLETE is
generally the recommend approach for new devices.
Checksum-unnecessary conversion. Checksum-
unnecessary conversion is a technique in the Linux stack to
deduce the complete checksum of a received packet when
a non-zero UDP checksum has been verified [19]. This is
useful in cases where a NIC is only capable of providing
CHECKSUM_UNNECESSARY for simple UDP/IP packets.
If a UDP checksum has been verified, the ones
complement checksum of the packet starting from the UDP
header equals the complement of the pseudo header
checksum used in UDP checksum calculation. This is used
to convert the CHECKSUM_UNNECESSARY indication for
the UDP checksum to CHECKSUM_COMPLETE with a
checksum value. Any inner checksums in the packet can
then be verified by the stack without performing a
checksum calculation over the packet. Most of the work for
checksum-unnecessary conversion is implemented in the
skb_checksum_try_convert function.

The actions of checksum-unnecessary conversion are:
1. NIC reports in receive descriptor that the transport

(UDP) checksum for a packet has been verified.
2. Host driver sets CHECKSUM_UNNECESSARY in

the sk_buff for the packet.
3. UDP layer accepts that the UDP checksum is

valid based on CHECKSUM_UNNECESSARY.
4. UDP socket is matched. If checksum-unnecessary

conversion is configured for the socket and the
UDP checksum is non-zero perform conversion.

5. Calculate the checksum of the pseudo header that
is used in calculating the standard UDP
checksum. This is a checksum calculation over
the IP addresses and UDP ports in the packet.

6. Set csum in the sk_buff to the complement of
the pseudo header checksum calculated in step #5.
Set ip_summed to CHECKSUM_COMPLETE.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

7. Continue processing the packet. Inner protocol
layers call skb_postpull_rcsum so that
csum reflects the checksum of the packet for the
current layer being processed. If an encapsulated
packet has a checksum (e.g. TCP), the checksum
complete value is used to validate it.

Remote Checksum Offload. Remote checksum offload is
a mechanism that provides checksum offload on transmit
of encapsulated packets using only rudimentary NIC
offload capabilities [20]. This technique leverages UDP
transmit checksum offload which is supported by most
NICs including those that only support NETIF_IP_CSUM.
The outer UDP checksum is enabled in packets and, with
some additional meta data, a receiver is able to deduce the
checksum to be set for an inner encapsulated packet.
Effectively this offloads the computation of the inner
checksum to the remote host. The UDP checksum covers
the whole packet so there is no loss of protection for the
inner packet.

Remote checksum offload requires an encapsulation
header that allows optional data in the encapsulation. This
has been implemented for Generic UDP Encapsulation and
VXLAN (in Linux version 3.19) [21,22,23]. The remote
checksum data set in an encapsulation header is comprised
of a pair of checksum start and checksum offset values.
More than one offloaded checksum could be supported if
multiple pairs are represented. Checksum start is the
starting offset for checksum computation relative to the
start of the encapsulated payload. This is typically the
offset of a transport header (e.g. UDP or TCP). Checksum
offset is the offset where the derived checksum value is to
be written relative to the start of encapsulated payload.
This typically is the offset of the checksum field in the
transport header (e.g. UDP or TCP checksum).
 The typical actions to set up remote checksum offload on
transmit are:

1. Transport layer creates a packet and indicates in
the sk_buff that its checksum is to be offloaded
to the NIC for normal transport checksum offload.

2. Encapsulation layer adds its headers to the packet
including the optional data for remote checksum
offload. The start offset and checksum offset are
set per csum_start and csum_offset in
the sk_buff.

3. Encapsulation layer arranges for hardware
checksum offload of the outer UDP checksum,
this overrides the offload parameters set in the
sk_buff for the transport layer checksum.

4. Packet is sent to the NIC. The NIC will perform
transmit checksum offload and set the checksum
field in the outer UDP header. The inner headers
and rest of the packet are transmitted without
modification.

The typical actions a host receiver does to support
remote checksum offload are:

1. Receive packet and validate outer checksum
following normal processing (ie. validate non-
zero UDP checksum).

2. Deduce complete checksum for the packet. This is
directly provided if the device returns the packet
checksum in CHECKSUM_COMPLETE. If the
device returned CHECKSUM_UNNECESSARY,
checksum-unnecessary conversion can be done to
deduce the checksum

3. From the packet checksum, subtract the checksum
computed from the start of the packet (outer IP
header) to the offset in the packet indicated by
checksum start in the optional data. The result is
the deduced checksum to set in the checksum
field of the encapsulated transport packet.

4. Write the resultant checksum value into the packet
at the offset provided by checksum offset in the
optional data.

5. Checksum is verified at the transport layer using
normal processing. This should not require any
checksum computation over the packet since the
complete checksum has already been deduced.

Segmentation Offload

Segmentation offload refers to techniques that attempt to
reduce CPU utilization on hosts by having the transport
layers of the stack operate on large packets. In transmit
segmentation offload, a transport layer creates large
packets greater than MTU size (Maximum Transmission
Unit). It is only at much lower point in the stack, or
possibly the NIC, that these large packets are broken up
into MTU sized packet for transmission on the wire.
Similarly, in receive segmentation offload, small packets
are coalesced into large, greater than MTU size packets at
a point low in the stack receive path or possibly in a
device. The effect of segmentation offload is that the
number of packets that need to be processed in various
layers of the stack is reduced, and hence CPU utilization is
reduced.

The Linux stack supports TCP segmentation offload
and UDP fragmentation offload. For UDP encapsulation,
TCP segmentation is the primary interest.
Generic Segmentation Offload. Generic
Segmentation Offload, or GSO, is software feature of the
Linux networking stack which allows the stack to create
large, greater than MTU size TCP packets [24].
Immediately before handing off a packet to a driver for
transmission, GSO splits the packet into separate smaller
packets of size less than or equal to the MTU.

The packets created by GSO need to have their own
headers, and certain fields in these headers need to be
explicitly set on a per packet basis. For each created
segment the general process is:

1. Replicate the TCP header and all preceding
headers of the original packet.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

2. Set payload length fields in any headers to reflect
the length of each new segment.

3. Set the TCP sequence number to correctly reflect
the offset of the TCP data in the stream.

4. Recompute and set any checksums that either
cover the payload of the packet or a cover header
which was changed by setting a payload length.

In Linux, skb_gso_segment is called by the
networking stack to perform segmentation of a large packet
before transmission. skb_gso_segment calls a series of
chained callbacks for each protocol layer of the packet,
usually starting from the Ethernet layer. Each protocol that
participates in GSO implements a gso_segment
function which returns the created packets in a list of
sk_buffs. Each GSO function does two things. First
gso_segment is called for the next layer protocol. The
lowest layer GSO function (e.g. tcp_gso_segment)
calls skb_segment to actually create the packets. For
each packet created, protocol headers are simply copied
from the large packet. Upon return from calling
gso_segment for the next layer (or skb_segment), a
protocol layer sets header fields in each new packet to
reflect the segmentation. For instance, the IP layer needs to
set the total length field in each packet before returning.

The sk_buff structure includes a field gso_type
which contains a set of flags describing the affected
protocol layers and parameters for a large GSO packet.
These flags have the form SKB_GSO_*. For example, an
IPIP packet containing an encapsulated TCP packet would
include types SKB_GSO_IPIP and SKB_GSO_TCP. A
packet with UDP encapsulation would include
SKB_GSO_UDP_TUNNEL if zero UDP checksum is to be
set on transmission, or SKB_GSO_UDP_TUNNEL_CSUM
if UDP checksums are enabled.

In the case of GSO with encapsulation, the stack initially
performs encapsulation on the large packet. The
encapsulation layer sets the inner headers appropriately in
the sk_buff and also sets the inner_protocol value
to correspond to the encapsulated packet (this can be an IP
protocol or Ethertype). The UDP GSO handler will detect
that a packet is UDP encapsulated when the
encapsulation bit is set in the sk_buff and the
gso_type includes SKB_GSO_UDP_TUNNEL_*. The
UDP GSO handler will call the gso_segment function
for the encapsulated protocol based on the value in
inner_protocol. Any additional encapsulation
headers between the start of the UDP payload and the start
of the encapsulated packet (indicated by the offset in
inner_mac_header) are treated as being opaque and
just copied into each segment. This allows a generic
encapsulation that works with any UDP encapsulation
protocol as long it does not have fields that need to be
explicitly set on a per segment bases.
Large Segmentation Offload. Many NICs provide
Large Segment Offload (LSO) for performing transmit
segmentation offload in hardware [25]. This is called TCP

Segmentation Offload (TSO) when applied to TCP
segmentation. Since LSO happens in the device, it can
provide better performance compared to GSO.

The process of LSO is similar to that of GSO. The
hardware is provided a large packet for transmission. It
splits the large packet into smaller packets properly setting
lengths, checksums, sequence numbers in each packet's
headers.

Devices typically only support a subset of protocols for
LSO that the stack supports for GSO. Drivers indicate
supported protocols for LSO by setting flags in their
advertised feature flags. These flags typically correspond
to equivalent SKB_GSO_* flags. For instance,
NETIF_F_GSO_UDP_TUNNEL would indicate that a
device is capable of performing LSO on a UDP tunnel.
Some devices may support an offload with constraints, for
instance the encapsulation headers might need to be less
than a certain length. In these cases, drivers may define
ndo_features_checks which is called from the core
transmit path to determine if a device is capable of
performing offload operations on a given packet [26]. This
function gives the driver an opportunity to implement any
restrictions that cannot be otherwise expressed by feature
flags. If it is determined that a device cannot perform LSO
for a packet, the stack will always fall back to doing GSO.

To implement LSO with UDP encapsulation, it is
desirable that the implementation is agnostic to the
particular method of UDP encapsulation. This is possible
assuming that encapsulation headers don't include fields
that need to be updated for each segment. In this case the
NIC would be provided with the offset of the inner MAC
header (or inner network header), so that for each segment
the bytes from the start of the UDP payload to the inner
MAC header are just copied from the large packet.
Generic Receive Offload. Generic Receive Offload, or
GRO, is feature of the Linux networking stack which
coalesces packets for a flow (usually for TCP) into large
packets before being subjected to higher layer protocol
processing [27]. The GRO functions are called as early as
possible in the network receive path in order to maximize
the benefits.

In Linux, network drivers call napi_gro_receive to
handoff received packets to the stack. If the GRO feature is
enabled on the receiving device, the stack will attempt to
perform GRO coalescing on the packet. For each
networking device, a list of flows being coalesced is
maintained. The structure for each flow holds a list of
packets that have been matched to belong to the same
network flow and are being coalesced. The GRO operation
is to try to match a received packet with one of the flows.
If a flow is matched and the packet is next in sequence for
the flow, it can be coalesced. The list of flows being
coalesced is created on demand, so if a packet does not
match an existing flow a new one is added to the device's
list.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

To match a packet, a series of chained callbacks
(gro_receive functions) is called for each protocol
layer of the packet usually starting at Ethernet. Before the
callbacks, the stack marks each recorded flow as a
candidate for matching the packet (same_flow is set for
each flow in the list). At each callback, a protocol layer
considers whether the packet matches the flows based on
characteristics of the particular protocol layer (for instance
IP addresses are compared in the IP layer). For flows that
do not match they are marked to not be a candidate
(same_flow is cleared). A protocol callback can also
mark a packet to be flushed so that no further attempt is
made to match the packet and it will be received directly
by the stack.

Upon return from the gro_receive calls, if there is a flow
in the device list that matches the packet (same_flow is
set) then the packet is coalesced into the flow. Otherwise,
the packet is either received normally (when marked to
flush), or a new flow is created for the received packet.

Coalesced packets are sent into the stack for processing
when napi_gro_flush is called. This is normally
called at NAPI completion (NAPI is the soft interrupt
processing for a receive network interrupt). For each large
packet created, another series of chained callbacks
(gro_complete functions) are called to finalize the
GRO coalescing.

To support GRO with UDP encapsulation,
gro_receive and gro_complete need to be called
for the specific encapsulation method which essentially
means that the functions need to be associated with a UDP
port. To provide for this, a facility to register offload
callback functions per UDP port was introduced [28]. In
the UDP GRO functions (udp_gro_receive and
udp_gro_complete), the destination port of a packet is
looked up in the list of registered offloads. If a match is
found, the corresponding gro_receive or
gro_complete function for the UDP port is called.
udp_add_offload and udp_del_offload are used
to register and unregister the per port offload functions.

The gro_receive and gro_complete functions for
an encapsulation method need to call the functions
associated with the protocol of the encapsulated packet. If
the protocol is carried in an additional encapsulation
header (like in GUE), the packet can be parsed to retrieve
this. If the protocol is saved in the receive socket (like in
FOU), this value is passed by the UDP layer in the control
buffer (cb) of the sk_buff for a packet. If the
encapsulation method includes an encapsulation header, its
fields should be considered when matching flows; the most
straightforward implementation is to compare all the bytes
in the encapsulation header.
Large Receive Offload. Large Receive Offload (LRO) is a
NIC feature where packets of a TCP connection are
coalesced in the NIC and delivered to the host as one large
packet [29]. LRO is analogous to GRO, requires significant
protocol awareness to be implemented correctly, and is

difficult to generalize. The NIC must be informed of the
port number for a supported UDP encapsulation method.
Packets in the same flow need to be unambiguously
identified. In the presence of tunnels or network
virtualization, this may require more than a five-tuple
match (packets for flows in two different virtual networks
may have identical five-tuples). Additionally, a NIC needs
to perform validation over packets that are being
coalesced, and needs to fabricate a single meaningful
header from all the coalesced packets.

The conservative approach to supporting LRO for UDP
encapsulation would be to match packets to the same flow
only if they were encapsulated exactly the same way and
both the outer and inner headers match. That is the outer IP
addresses, outer ports, inner protocol, inner IP addresses
or Ethernet addresses, inner transport layer ports, and any
additional encapsulation headers are all identical.

UDP Encapsulation protocols

Several protocols can be encapsulated over UDP in the
Linux networking stack. L2TP (Layer two tunneling
protocol) and ESP (Encapsulating Security Payload) may
be configured to be encapsulated directly within UDP.
VXLAN (Virtual Extensible LAN) and Geneve (Generic
Network Virtualization Encapsulation) are relatively new
encapsulation techniques targeted towards carrying Layer 2
packets for network virtualization. [30,31] Two generic
encapsulation techniques of the Linux stack are Foo-over-
UDP and Generic UDP Encapsulation; these are discussed
in more detail below.

Figure 2. Protocol headers for encapsulation of an IP packet. The
figure on the left depicts FOU encapsulation, the destination port
in the UDP header implies that the UDP payload is an IP packet.
The figure on the right illustrates GUE encapsulation, the
proto/ctype field in the GUE header is set to 4 indicating IPv4
encapsulation.

Foo-over-UDP

Foo-over-UDP (FOU) is a feature of Linux which allows
packets of any IP protocol to be directly encapsulated in
UDP [32]. As depicted in figure 2, FOU does not define an

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

encapsulation header, so the protocol of an encapsulated
packet is inferred from the destination UDP port. For
instance, a server may open port 5555 which receives IP
over UDP (IP packets encapsulated within UDP). A peer
may send an encapsulated IP packet in UDP to this port
with no additional encapsulation headers. Logically, the
UDP header for FOU encapsulation is inserted in a packet
on encapsulation, and removed on decapsulation.

The receive side of FOU is implemented in the fou
kernel module. Configuration is really just a matter of
setting up a UDP port to be the recipient of encapsulated
packets. The "fou" subcommand of “ip” is intended for
this purpose:

 ip fou add port 5555 ipproto 4

The port keyword indicates the port number for the
encapsulation and ipproto indicates the associated IP
protocol. So this command sets aside port 5555, saying that
packets arriving there will have IP protocol 4, which is IP
encapsulation. Packets received on that port will have the
encapsulating UDP header removed; and are then fed back
into the network stack for IP layer processing of the inner
packet.

Upon opening a FOU socket, the encap_rcv callback
is set to fou_udp_recv which is the FOU UDP receive
function. The configured IP protocol is kept in the private
data for the socket. When receiving a packet the stack calls
fou_udp_recv via encap_rcv. This function
logically removes the UDP header in the packet by setting
the sk_buff's transport_header to refer to the
UDP payload (encapsulated packet). The
total_length field in the IP header is reduced by eight
bytes for the UDP header, so that to the stack the resulting
packet is an IP header followed by the encapsulated packet.
fou_udp_recv returns the negative of the protocol
number stored in the socket; this serves as an indication to
the stack the packet should be re-injected for transport
protocol processing with the protocol layer referred to by
the returned number.

On the transmit side, IPIP, SIT, and GRE tunnels have
been updated to allow FOU encapsulation. FOU is
effectively treated as another attribute of a tunnel. A
typical command to configure a tunnel with FOU
encapsulation might look like:

 ip link add name tun1 type ipip \
 remote 192.168.1.1 \
 local 192.168.1.2 \
 ttl 225 \
 encap fou \
 encap-sport auto \
 encap-dport 5555

This command will set up a new virtual interface (tun1)
configured for IPIP encapsulation over UDP. The encap

keyword indicates that the IP tunnel is being encapsulated
(choices currently are fou and gue). encap-sport indicates
the source port where auto as the argument means that the
source port is is automatically set by the stack based on the
inner flow identifier by calling udp_flow_src_port.
Encap-dport indicates the destination port to use. In the
this example the destination UDP port is 5555, and the
source port is automatically set by the stack.

Generic UDP encapsulation

Generic UDP Encapsulation is a general method for
encapsulating packets of arbitrary IP protocols within UDP
[33,34]. GUE defines an encapsulation header which
immediately follows the UDP header as shown in figure 2.
The GUE header has an extensible format to allow
carrying of optional data. This optional data potentially
covers items such as virtual networking identifier, security
data for validating or authenticating the GUE header,
congestion control data, etc. GUE also allows private
optional data in the encapsulation header; this can be used
by a site or implementation to define custom optional data.
GUE Header Format. The header format for version 0x0
of GUE in UDP diagrammed in figure 3.

Figure 3. UDP and GUE headers in Generic UDP Encapsulation.
The UDP header is always eight bytes, the GUE header is
variable length composed of a fixed four byte header followed by
optional data fields.

The contents of the UDP header are:
• Source port: (inner flow identifier): This should

be set to a value that represents the encapsulated
flow.

• Destination port: Set to port number for GUE.
• Length: Canonical length of the UDP packet

(length of UDP header and payload).
• Checksum: Standard UDP checksum.

The GUE header consists of:
• Version number: Version number of the GUE

protocol.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

• C: Control bit. When this bit is set the payload is
a control message, when not set the payload is a
data message (encapsulated packet of an IP
protocol).

• Hlen: Length in 32-bit words of the GUE header,
including optional fields but not the first four
bytes of the header. Note that each field in GUE
has a size which is a multiple of thirty-two bits so
there is no need for padding.

• Proto/ctype: When the C bit is set, this field
contains a control message type in the payload.
When C bit is not set, the field holds the IP
protocol number for the encapsulated packet in
the payload. The control message or encapsulated
packet begins at the offset provided by Hlen.

• Flags: Header flags that may be allocated for
various purposes and may indicate presence of
optional fields. Undefined header flag bits must
be set to zero on transmission.

• P: Private flag. Indicates presence of private flags
field in the optional fields.

• Fields: Optional fields whose presence is
indicated by corresponding flags.

• Private flags: An optional field indicated by the P
bit. This field is a set of private flags which may
in turn indicate presence of private fields.

• Private fields: Optional fields that are present
when a corresponding bit in the private flags is
set.

GUE characteristics. The protocol type in a GUE data
message allows the use of any IP protocol number. This
includes Layer 2 encapsulation (EtherIP), Layer 3
encapsulations of IPv4 and IPv6 packets, as well as
encapsulation of layer 4 packets such as TCP or UDP. In
the latter case, also referred to as transport mode
encapsulation, the outer IP header is the header for the both
the outer UDP and the encapsulated transport protocol
packet; if the inner transport protocol has a checksum
which includes an IP pseudo header, the pseudo header is
based on the outer (only) IP header.

Flags and associated optional fields are the primary
mechanism of extensibility in GUE. There are sixteen flag
bits in the GUE header, one of which is reserved to
indicate the presence of a private flags optional field.

A flag may indicate presence of optional fields. Fields
contain optional data. Field sizes are multiples of thirty-
two bytes, and the size of an optional field indicated by a
flag must be fixed. Fields are processed in a manner
similar to GRE processing. They are arranged in the packet
in the order of the flags that indicate their presence, the
offset of a particular field is determined by the sum of all
the sizes of preceding fields that are present in the header.

Flags and fields had been defined for network
virtualization identifiers, security data, GUE header
checksum, and remote checksum offload.

GUE implementation. Similar to FOU, the Linux GUE
implementation separates the transmit and receive path.

The receive side of GUE is implemented in the fou
module. Upon opening a GUE socket, the encap_rcv
callback is set to gue_udp_recv to receive packets
encapsulated using GUE. Configuration is performed by
using the “fou” subcommand of “ip” with gue as a
parameter:

 ip fou add port 7777 gue

This command sets aside port 7777, saying that packets
arriving there are encapsulated with GUE as indicated by
the gue keyword. Packets received on that port are
processed by gue_udp_recv. They are verified to be
valid GUE packets, and if the GUE header contains options
these are processed also. If the packet cannot be verified,
required security credentials are not present, or the
encapsulation is otherwise malformed then the packet is
dropped. For an acceptable packet, the encapsulating UDP
and GUE headers are removed by adjusting
transport_header in the sk_buff to refer to the
encapsulated packet, and the packet is then fed back into
the network stack for processing the inner packet similar to
FOU handling. The IP protocol of the encapsulated packet
is taken directly from the proto/ctype field in GUE
header, this can conceptually be any legal IP protocol
number.

Similar to FOU, on the transmit side the IPIP, SIT, and
GRE tunnels have been updated for GUE encapsulation.
A typical configuration command might look like:

ip link add name tun1 type ipip \
 remote 192.168.1.1 \
 local 192.168.1.2 \
 ttl 225 \
 encap gue \
 encap-sport auto \
 encap-dport 7777 \
 encap-udp-csum \
 encap-remcsum

This command will set up a new virtual interface (tun1)
configured for IPIP encapsulation using Generic UDP
Encapsulation. The destination UDP port is 7777, and the
source port is automatically set by the stack. Packets sent
on this tunnel are encapsulated in a UDP and GUE header
where the next protocol in the GUE header is set to 4 (for
IPIP). In this example the UDP checksum and remote
checksum offload are also enabled by the encap-udp-
csum and encap-remcsum keywords

Conclusion

Support for UDP encapsulation is an impressive
achievement in the Linux networking stack and is the
result of a broad community effort with many contributors.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

Further development, new encapsulation features and
protocols, and new use cases for encapsulation will
continue to contribute to the importance and utility of UDP
encapsulation in the data center.

Acknowledgements
We would like to thank Willem de Bruin and Nandita
Dukkipati for their valuable feedback.

References
1. Postel, J., "User Datagram Protocol", STD 6, RFC 768,
August 1980
2. Perkins, C., "IP Encapsulation within IP", RFC 2003,
October 1996
3. Gilligan, R. and E. Nordmark, "Transition Mechanisms
for IPv6 Hosts and Routers", RFC 1933, April 1996
4. Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
Traina, "Generic Routing Encapsulation (GRE)", RFC
2784, March 2000
5. Lau, J., Ed., Townsley, M., Ed., and I. Goyret, Ed.,
"Layer Two Tunneling Protocol - Version 3 (L2TPv3)",
RFC 3931, March 2005
6. Housley, R. and S. Hollenbeck, "EtherIP: Tunneling
Ethernet Frames in IP Datagrams", RFC 3378, September
2002
7. “Linux 3.18", Linux Kernel Newbies, December 2014,
http://kernelnewbies.org/Linux_3.18
8. “skbuff.h”, Linux source file (version 3.18 of Linux)
 http://lxr.free-electrons.com/source/include/linux/skbuff.h
9."Equal-cost multi-path routing", Wikipedia,
http://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
10. “Scalable Networking: Eliminating the Receive
Processing Bottleneck—Introducing RSS”, Microsoft,
http://download.microsoft.com/download/5/D/6/5D6EAF2
B-7DDF-476B-93DC-7CF0072878E6/NDIS_RSS.doc
11. de Bruijn, W., Herbert, T., "Scaling in the Linux
Networking Stack",
https://www.kernel.org/doc/Documentation/networking/sca
ling.txt
12. "ethtool(8) - Linux man page", Linux man pages
 http://linux.die.net/man/8/ethtool
13. Herbert, T., “udp: Add function to make source port for
UDP tunnels”, Linux commit, July 2014,
https://patchwork.ozlabs.org/patch/366245/
14. Carpenter, B. and S. Amante, "Using the IPv6 Flow
Label for Equal Cost Multipath Routing and Link
Aggregation in Tunnels", RFC 6438, November 2011
15. Herbert, T., “ipv6: Implement automatic flow label
generation on transmit”, Linux commit, July 2014,
https://patchwork.ozlabs.org/patch/366248/
16. Fairhurst, G. and M. Westerlund, "Applicability
Statement for the Use of IPv6 UDP Datagrams with Zero
Checksums", RFC 6936, April 2013
17. Herbert, T., “udp: Generic functions to set checksum”,
Linux commit, June 2014,
https://patchwork.ozlabs.org/patch/356132/

18. “skb_postpull_rcsum (9)”, Linux man pages,
http://dev.man-online.org/man9/skb_postpull_rcsum/
19. Herbert, T., Linux commit, “net: Infrastructure for
checksum unnecessary conversions”, Linux commit,
August 2014,
https://patchwork.ozlabs.org/patch/384592/
20. Herbert, T., “Remote checksum offload for
encapsulation”, Internet-draft, November 2014,
https://tools.ietf.org/html/draft-herbert-remotecsumoffload-
01
21. Herbert, T., “gue: Remote checksum offload”
http://permalink.gmane.org/gmane.linux.network/336556
22. Herbert, T., “Remote checksum offload for VXLAN”,
Internet-draft, December 2014,
https://tools.ietf.org/html/draft-herbert-vxlan-rco-00
23. Herbert, T., “vxlan: Remote checksum offload”, Linux
commit, January 2015,
https://patchwork.ozlabs.org/patch/428200/
24. Xu, H., “GSO: Generic Segmentation Offload”, June
2006
http://lwn.net/Articles/188489/
25. “Large Segment Offload”, Wikipedia,
http://en.wikipedia.org/wiki/Large_segment_offload
26. Gross, J., “net: Generalize ndo_gso_check to
ndo_features_check”, Linux commit, December 2014,
https://patchwork.ozlabs.org/patch/423854/
27. Corbet, J, “JLS2009: Generic receive offload”, October
2009,
https://lwn.net/Articles/358910/
28. Gerlitz, O., “net: Add GRO support for UDP
encapsulating protocols”, Linux commit, January 2014,
http://patchwork.ozlabs.org/patch/312516/
29. “Large Receive Offload”, Wikipedia,
http://en.wikipedia.org/wiki/Large_receive_offload
30. Mahalingam, M., Dutt, D., Duda, K., Agarwal, P.,
Kreeger, L., Sridhar, T., Bursell, M., and C. Wright,
"Virtual eXtensible Local Area Network (VXLAN): A
Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks", RFC 7348, August 2014
31. Gross, J., Sridhar, P., Wright, C., Ganga, I., Agarwal,
P., Duda, K., Dutt, D., Hudson, J., “Geneve: Generic
Network Virtualization Encapsulation”, Internet-draft,
October 2014,
https://datatracker.ietf.org/doc/draft-gross-geneve/
32. Corbet, J., “Foo over UDP”, October 2014,
http://lwn.net/Articles/614348/
33. Herbert, T., and Yong, L., “Generic UDP
Encapsulation”, Internet-draft, October 2014,
https://tools.ietf.org/html/draft-herbert-gue-02
34. Herbert, T. “net: Generic UDP Encapsulation”,
October 2014,
http://lwn.net/Articles/615044/

Author Biography
Tom Herbert is a software engineer at Google working on content
ads indexing, Linux kernel networking, and networking protocol

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

http://en.wikipedia.org/wiki/Equal-cost_multi-path_routing
http://permalink.gmane.org/gmane.linux.network/336556

development. He is an active contributor to Linux netdev as well
as a participant in the IETF.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

