
The TSN Building Blocks in Linux

Ferenc Fejes1, Péter Antal2, Márton Kerekes2
1 Ericsson Research TrafficLab, 2 Budapest University of Technology and Economics

Budapest, Hungary
ferenc.fejes@ericsson.com

Abstract

Various application areas e.g. industrial automation, pro-
fessional audio-video, automotive in-vehicle, aerospace on-
board, and mobile fronthaul networks require deterministic
communication: loss-less forwarding with bounded maximum
latency. There is a lot of ongoing standardization activity
in different organizations to provide vendor-agnostic building
blocks for Time-Sensitive Networking (TSN), what is aimed
as the universal solution for deterministic forwarding in OSI
Layer-2 networks. Furthermore, the implementation of those
standards is also happening in Linux. Some of them require
software changes only, but others have hardware support re-
quirements. In this paper, we give an overview of the imple-
mentation of the main TSN standards in the mainline Linux
kernel. Furthermore, we provide measurement results on key
functionality in support of TSN, e.g., scheduled transmission
and Linux bridging characteristics.

Keywords
Time-Sensitive Networking, bounded latency, isochron, XDP,
ETF, PTP, timestamps, time synchronization, packet delay
variation, Ethernet

Introduction
Some applications have tight Quality of Service requirements
in industrial automation, professional audio-video, automo-
tive in-vehicle, aerospace on-board, and mobile fronthaul net-
works. These applications cannot tolerate disturbances in
their communication. In everyday web browsing or file down-
load, packet losses in the network are considered part of the
normal operation. These losses are usually handled by the
transport layer protocol (e.g. Transport Control Protocol)
which retransmits the lost data. On the contrary, losing a
few consecutive packets can be fatal for applications men-
tioned before. Note that receiving critical packets after their
deadline is equivalent to loss as the application cannot use
the information carried in a packet received late. In the rest
of the paper, we refer to those as time-sensitive applications,
requiring deterministic communication. Time-sensitive ap-
plications require networks to provide the following deter-
ministic characteristics:

• High reliability

• Bounded maximal latency

• Low latency-variation (jitter)

• No packet loss due to congestion

Time-Sensitive Networking (TSN) equip Ethernet networks
with tools to meet these requirements. It is important to note
that most applications only require a subset of the TSN tools.
Because of that vendors have been providing different solu-
tions for a long time. In Layer-2 networks Fieldbus technolo-
gies specialized in industrial communication existed since the
1980s. It would be hard to enumerate all of them, but a
few examples: PROFIBUS, Modbus, CC-Link, DeviceNet,
etc. Later, their Ethernet versions also appeared on the mar-
ket, like EtherNet/IP, PROFINET, EtherCAT, Modbus-TCP,
and many others. Several of them have developed into full-
fledged TSN stacks today providing time-sensitive services
and APIs at every OSI layer.

Inevitably, a fragmented ecosystem like this has its disad-
vantages e.g. these solutions are incompatible. And even if
a customer would accept to stick with one vendor and tech-
nology, there are industrial equipment simultaneously using
multiple fieldbus technologies. For example, a robotic arm
might be connected with multiple network technologies at the
same time, one for the control signal, one for safety signaling,
and another for diagnostic communication. Consequently,
the manufacturer should support multiple fieldbus ecosystem
which increase the development costs and complexity. Also,
in a network there might be devices manufactured only with
incompatible fieldbus support. In that case they can be only
used with necessary relays or converters. At the end, this
result high CAPEX and OPEX and low extension or recon-
figuration flexibility.

IEEE Standards and DetNet
In response to the growing market demands, the TSN Task
Group, as part of the IEEE 802 Working Group [1], specifies
Layer-2 TSN standards. These standards open the door not
only to vendor-independent TSN solutions but also to the im-
plementation of these TSN features in the mainline Linux ker-
nel. These extend previous standards with TSN capabilities
or define standalone TSN standards. The lower case indicates
extensions (802.1Qbv, Qci, Qch, etc.), and the upper case in-
dicates stand-alone (802.1AB, CB, AS, etc.). Standardiza-
tion of Layer-3 features that are similar to TSN is the sub-
ject of the IETF Deterministic Networking (DetNet) Working



Group, [2] which are not discussed in this paper.
Our paper is divided into two parts. In the first part, we

give a brief overlook of the TSN standard landscape, focus-
ing on their location in the Linux-based ecosystem. Here we
discuss the software and hardware support aspects and the
implementation status of the standards as of today. In the
second part, we showcase a few measurements performed on
a real testbed. These experiments give a sense of realisti-
cally achievable packet-scheduling precision, the jitter intro-
duced by different switching methods, and also their relation
to hardware offload. Important to note that there are propri-
etary TSN stacks shipped as binary blobs and precompiled
kernel modules in a customized Linux distribution, but these
are outside of the scope of this paper.

The TSN Landscape
A significant advantage of Linux is its support for a wide
range of IEEE Layer-2 standards. This means that incor-
porating the TSN standards can be accomplished in a well-
established framework. Some TSN capabilities also require
explicit support by the hardware. While for others the hard-
ware support is optional, and the functionality can be imple-
mented purely in software. The current direction of imple-
menting TSN capabilities in Linux is having the best of both
worlds: if there is supporting hardware, the TSN function
could be offloaded into that providing very accurate timing
precision. Without TSN-capable hardware, the function can
fall back to software mode, so the applications can still lever-
age them (but with reduced accuracy or increased CPU uti-
lization). Also advantageous is that Linux has its well-known
userspace tooling for network configuration like ethtool or
the ip, tc, and bridge tools from the iproute2 [3] pack-
age. The user can use those to configure TSN familiarly.

Important to note that to build an end-to-end TSN network,
both the end-hosts and the switches should support the re-
lated standards. This is another area where TSN and Linux
have synergy. Specifically, Linux provides an extensible
switch model called Distributed Switch Architecture (DSA)
[4]. With the help of DSA, switch ports are represented as
ordinary network interfaces and can be configured just like
them. There is also a driver model called switchdev [5] that
helps the switches to offload their dataplane into the hard-
ware. Switches with DSA and switchdev are first-class citi-
zens in Linux and that way TSN switches are too.

Below we will go through the main TSN standards released
so far, and summarize the current status of their adoption in
the Linux kernel.

Time synchronization: IEEE 1588 and IEEE
802.1AS-2020
The IEEE 1588 or Precision Time Protocol (PTP) [6] is de-
signed to synchronize clocks over the network with sub-
microsecond accuracy. The protocol implementation spread
from the NIC hardware and driver and kernel interfaces to
a userspace stack. The de-facto userspace PTP stack is the
linuxptp [7] providing ptp4l and phc2sys applications
(among other tools). By default the clocks (nor the sys-
tem clock or the NIC clocks referred as PTP hardware clock

(PHC)) are not synchronized together, that’s done by the
phc2sys. The ptp4l implements the protocol operations
like selecting the [grand]master and slave clocks, generating
sync packets over the network, etc. The minimum require-
ment of PTP is software timestamping support in the NIC
driver. However as we will show it later, if the timestamp-
ing is done by the NIC’s hardware clock, the accuracy of the
synchronization can be improved by orders of magnitudes.

The IEEE 802.1AS-2020 [8] define the Generalized PTP
(gPTP) to extend the applicability of PTP in various usecases.
One of the differences is that gPTP is restricted to Layer-2
transport while PTP can be used over Layer-3 and 4 (UDP).
Also, gPTP defines designated PTP relays and forbids any
other (like tunneled or routed) PTP transmission method be-
tween not directly connected devices, which was allowed by
regular PTP. Other differences can be found in the 7.5 section
of the standard [8].

gPTP defines multiple domains, which is required if we
want to run multiple instances of other TSN protocols on one
device. In Linux 5.14 the kernel space PTP virtual clock in-
frastructure [9] was introduced and in 5.18 the userspace in-
terface [10] too. The linuxptp also got virtual clock support
[11], however full gPTP support is still under discussion.

Frame Preemption: IEEE 802.1Qbu and 802.3br
Frame preemption can suspend the ongoing transmission of a
frame for the transmission of another, higher priority frame.
When the high priority frame transmitted, the transmission
of the original (preempted) frame is continued. Let’s con-
sider the following scenario: there is a 100 Mbps NIC and
the MTU is set to 9000 bytes on it. In an industrial envi-
ronment devices optimized to very high reliability and low
energy consumption, this is not unusual. In such a device
transmitting an MTU-sized frame took 720 µs. In contrast,
there are urgent control or safety signals few bytes in size
and they have to wait for the transmission of the large frame
to finish. For example, 64 bytes can be transmitted in 5,12
µs. IEEE 802.3br [12] defines preemptable MAC and ex-
press MAC (pMAC and eMAC) where eMAC transmission
can interrupt the pMAC transmission at any time. The IEEE
802.1Qbu [13] provides the assignment between the queues
and the two kinds of MAC and formalize the management
and configuration interface for frame preemption. With these
standards, the operator can configure the urgent transmissions
to use the eMAC and everything else to use the pMAC.

Devices with frame preemption hardware support are al-
ready on the market, but Linux support is not yet imple-
mented. Two proposals are discussed on the mailing list cur-
rently, one from Intel [14] and one from NXP [15]. The
main difference between the two approaches is the first uses
ethtool and tc to configure the pMAC and eMAC and
the second only relies on ethtool. The advantage of the
ethtool-only approach is the frame preemption can work
on NICs with one transmit queue.

Frame Replication and Elimination for Reliability:
IEEE 802.1CB
FRER [16] is a standalone standard, not an extension of the
IEEE 802.1Q. Unintuitively from its name it also defines a



stream identification function. That is important for propri-
etary device compliance and offloading, however, the defined
stream identification (like matching on MAC addresses, IPs,
or VLAN IDs) is already covered by Linux’s filtering capa-
bilities (like tc match or tc flower).

Other than the stream identification the standard defines
methods to replicate packets on disjoint paths and then on a
device close to the listener drop the unnecessary duplicates
(perform elimination). As a result, the stream remains unin-
terrupted even if the transmission of the frame fails on some
path.

Currently, there is no FRER support in the mainline ker-
nel. Although there are devices on the market capable to
run Linux and offering FRER support in their hardware,
their configuration can be done with vendor-provided pro-
prietary tools. One approach to FRER kernel module, hard-
ware offload, and user-space config interface from NXP were
sent to the mailing list [17] for discussion, however that as-
sumes DSA tagging which separates the host’s traffic from
the bridged traffic.

Per-Stream Filtering and Policing: IEEE 802.1Qci
The PSFP [18] standardizes functions to perform policing on
TSN streams. The way how to do it is by opening and closing
gates in front of ingress frames in a schedule defined by the
operator. For a given stream, if its frames are received when
its gate opens, PSFP let the frames into the bridge. However,
if the gate is closed, it will drop them. The operator can define
a byte limit for the open gates too, and if let through enough
frames then start dropping them. On a carefully designed
TSN network, the operator has good knowledge of how many
bytes should trespass on the gate so more than that could be
a result of the malfunction of the talker or malicious activity.
With PSFP also possible to do time-aware reprioritizations of
the frames. This is done by the Internal Priority Value (IPV)
assignment to the frames (which is metadata, so the frame is
not modified) set by the gates. To match the frames of a given
stream, PSFP leverage the stream identification function of
the 802.1CB.

PSFP support exists since the 5.8 kernel version [19]. For
stream identification, it uses the tc filters (flower, ipset,
u32, etc.) and the actual PSFP functionality implemented in
the tc gate action. Hardware PSFP support from a few de-
vices also exists in the mainline, it can be enabled by passing
the skip sw option to tc (or we can force the software mode
with skip hw even on capable hardware).

Enhancement for Scheduled Traffic: IEEE
802.1Qbv
With the help of 802.1Qbv [20] standard, the device can do
scheduled enqueueing and transmission on the egress frames.
Similarly to PSFP the operator can define the schedule for
gate opening and closing. The schedule contains a list of en-
tries and one entry contains a gate mask (bitmask which tells
which stream’s gate is open or closed) and duration (for how
long). If the gate is closed for a stream, its frames are en-
queued until the gate opens (only dropped if its buffer is full).
If open, the frames pass without any interruption or queueing.

That way the operator can design time windows for the TSN
streams with known and bounded latencies, and schedule the
best-effort traffic to the remaining time. This is how we can
protect the TSN traffic from congestion.

The 802.1Qbv manifestation in the Linux kernel is the
taprio (Time-Aware Priority) queueing discipline (qdisc)
[21] that made its way to the mainline in version 4.20. The
userspace configration done with tc and the parameters mimic
the mqprio qdisc but extending that with the schedule and
clock definition. Hardware offloading is also supported on a
few NICs and switches, but important to properly sync the
system and PHC clock of the taprio configured NIC to
avoid sending frames out of their window (in software mode
it is using the system clock).

Cyclic Queuing and Forwarding: IEEE 802.1Qch
CQF [22] is a standard defining hop-by-hop deterministic
frame forwarding for TSN streams. On the CQF-enabled
bridge the operator can configure cycles. At even cycles, the
CQF collects frames of one stream and drains the queue of
the other, and at odd cycles vica-versa. That way the two TSN
stream never interferes therefore congestion loss cannot hap-
pen. Also because of the cycle-time durations known on each
device, the end-to-end latency is upper-bounded and can be
easily calculated if we know the number of bridges between
the TSN talker and listener.

The standard explicitly states that CQF operation can be
achieved with the coordinated configuration of the PSFP and
802.1Qbv. As a consequence Linux already has CQF support.
For that PSFP (tc gate) should be configured at the ingress
port with fully open gates, but with a scheduled assignment of
different IPVs in each cycle. At the egress port tc taprio
is configured with the same schedule (same cycle durations).
At the same cycle, PSFP assigns IPV #1 to the frames and
taprio keeps the gate closed (filling the queue) for IPV #1
frames. At the next cycle, taprio opens the gate for IPV
#1 (drains the queue) and closes it for IPV #2, while PSFP
assigns IPV #2 to the frames. And then the schedule restarts
this loop. As one can notice, to successfully do that time-
synchronization is required between the ingress and egress
ports, and if there are multiple bridges between the talker and
the listener, each of them should be in sync.

Implementing Time-Sensitive Applications
So far we detailed the TSN standard adoption in Linux which
had great progress during the past few years. The first genera-
tion of Linux-based TSN switches are already available on the
market. However, for wide adoption of TSN end-hosts must
support time-sensitive application development. For that, it is
important to have some kind of support to schedule packets
with high precision and receive or process them with bounded
delay.

Also like most applications, time-sensitive applications
should run in the cloud, which require extra care from the
ecosystem, like mapping task scheduling priorities to packet
priorities in all network and virtualization layers between the
talker(s) and the listener(s). Cloudification of time-sensitive
applications however beyond the scope of this paper. Below



we would like to demonstrate that even sub-microsecond tim-
ing precision is achievable on commodity hardware. Our tests
focused on delay variation (jitter) because time-sensitive ap-
plications do not tolerate that. Also, traffic engineering on a
TSN network relies on bounded latencies, the important pa-
rameter is the maximum latency rather than the average or
median.

Testbed
The measurements were performed on three identical generic
PC equipped with Intel Core i7-7700K CPU, 8Gb DDR4
RAM, a motherboard with Z270M-PLUS chipset, and
Ubuntu 22.04 Server GNU/Linux distribution. Also to keep
up with the recent changes we changed the distro’s default
(5.15) kernel with 5.19-rc6 kernel version. Each machine
is equipped with a 4 ports Intel I225-LM ethernet interface,
which has TSN capabilities and even supports the hardware
offloading of some functions.

On scheduling precision
The simplest TSN scenario is where the talker is directly con-
nected with the listener and there are no switches between
them. Intuitively one cannot expect any disturbance in the
communication between these two, however, that might not
the case. The talker’s application will continuously check
the system clock, and send the data when the time is right.
But until the data is copied from the user memory to the ker-
nel space memory, passed down in the network stack by the
upper-layer protocol functions to lower-layer ones, copied
into the NIC’s memory, and finally send to the wire in a
frame: that takes time. Even worse, that time depends on
many parameters, like the CPU performance mode, the load
generated by other processes, the applied qdisc, and how well
the NIC driver is implemented.

To test that in our environment, we generated cyclic traf-
fic between two directly connected machines. For generat-
ing traffic we used the isochron application [23] which is
designed to evaluate TSN switch offload sanity and perfor-
mance. The tool is capable to do end-to-end measurements
by using the kernel’s timestamping infrastructure. It records
4 timestamps for each packet:

• software tx: the system clock time saved by the NIC’s
driver just before the sending started

• hardware tx: the talker NIC’s PHC time when the frame is
written into the wire

• hardware rx: the listener NIC’s PHC time when the frame
received from the talker

• software rx: the listener’s system clock time saved by the
driver right after the packet copied into the kernel memory

It’s important to keep every clock synchronized, to en-
sure that isochron does not start the traffic generator until
there are high differences between them. In our scenarios,
isochron generated one packet in every 500 µs. To do that
accurately, it uses the clock nanosleep syscall in abso-
lute time mode provided by the kernel API. After that, it relies
on the precision of the kernel’s timers to accurately wake up

and send the packet. The precision is illustrated in Figure 1.
which summarize the timestamps of 10000 packets.

As one can notice, 80 percent of the software tx timestamps
are inside the 1,5 µs radius of the 500 µs. Then as shown in
the figure, the hardware tx and rx timestamps are largely dom-
inated by the precision of the software tx time. The maximal
difference between the intended and the actual timestamps
is 3,5 µs in this sample. However, while the average of the
software rx timestamps is identical to the previous ones, 80
percent is in the 5 µs radius and the maximal observed differ-
ence is 15 µs. That is considered fairly precise for most use
cases, even taking the time from passing the data received up
to the userspace into consideration (a few microseconds ad-
ditionally).

SO TXTIME and Earliest TX-time First semantic
For larger packets, the sending syscall together with the copy-
ing time might be costly and the jitter can be high even un-
til the data reach the driver. Also, the clock nanosleep
precision depends on the system’s configuration and perfor-
mance, which can be less precise on hardware optimized for
low energy consumption than in our desktop CPU testbed.

To reduce the jitter, the SO TXTIME socket option is in-
troduced. On SO TXTIME enabled sockets we can pass a
control message (metadata) together with the data containing
the timestamp of the expected time of the transmission. This
timestamp is then taken into account by the Earliest TX-time
First (ETF) qdisc [24] if applied. That way the packet is al-
ready in the queue of the ETF qdisc (ordered by timestamp)
which passes it to the driver if the time arrived. The advan-
tage of that, ETF qdisc can be offloaded to the NIC hard-
ware. In that mode, the driver also passes the timestamp to
the NIC which schedules the transmission with its PHC. That
way very high precision can be achieved, on a modern NIC
that is in the sub-microsecond domain.

To illustrate that, ETF qdisc in offload mode is applied on
the talker, and isochron is set to use SO TXTIME mode.
In figure 2b. the whole hardware rx timestamp sample is
visualized, and for comparison on figure 2a. the previous,
clock nanosleep method sample is shown. The hard-
ware offload can achieve close to nanosecond precision, the
average difference is 5 ns while the maximum observed dif-
ference is 11 ns.

Jitter introduced by software switching
Finally, between the talker and the listener, a third PC is in-
serted to perform software switching. This is however not
a usual TSN scenario because one can expect a hardware
switch between the peers. Nevertheless, it’s worth observ-
ing how the currently available software switching methods
perform because those are very highly customizable and pro-
grammable to do other more complex tasks than packet for-
warding. This is essential for the cloudification of TSN func-
tions.

For this test we keep the hardware offloaded ETF packet
scheduling to not mistake the talker’s jitter with the switching
introduced. Three switching methods examined:
• Linux bridge - the Linux kernel’s original bridge imple-

mentation



Figure 1: The difference between two timestamps. The packet generator used the sleep method to schedule the transmission of
the packets. The (intended) period between two transmission is 500 microseconds

• XDP - a small eBPF program using the bpf redirect
function to perform frame redirection between the two in-
terfaces

• AF XDP - the frame DMA-d into buffers mapped to
userspace memory and the redirection done by passing the
appropriate descriptors to the TX ring of the other NIC’s
queue. The tests done by DPDK l2fwd application with
AF XDP zero-copy backend

During the measurement, CPU and interrupt load on the
switch machine are also applied with the stress-ng applica-
tion. The conclusion of our testing based on figure 3. is
there are negligible differences in the jitter introduced by
the switching methods. Linux bridge and AF XDP per-
formed equally in terms of maximum observed deviation, and
AF XDP was a little bit better with the median jitter. XDP
performed the best, because that contains the least complex
logic, and just redirects the frame to the egress interface right
after its reception.

Conclusion
In recent years the standardization of TSN triggered vendors
to build supporting hardware, both NICs and switches. Some
of these implementations uses mainline Linux kernel, and
can gain from its TSN functions. Adding TSN functions to
the kernel usually follows similar steps: first introducing the
TSN functionality’s software model with its user configura-
tion tool, and second if - it’s accepted by the community
- hardware offload option is added to the configuration set.
Kernel services support not only the transport node imple-

mentations but time-aware applications development as well.
Synchronization is an essential pillar of TSN technology,
which resulted in the enhancements of synchronization tools
between network devices and the system clock. Scheduling
packets with microsecond precision is made widely available,
and with proper hardware support reaching nanosecond level
accuracy is also possible. It is important note, that software-
only bridging between the talker and the listener may result
in significant jitter. Furthermore as presented in the mea-
surements section, the listener side jitter is also an important
factor for the end2end service. In longer term the deploy-
ment of time-sensitive applications require determinism both
at Layer-2 and Layer-3 with appropriate mapping of traffic
classes and priorities between them. As DetNet standardiza-
tion is evolving, these features may soon be implemented in
Linux, built on top of the existing TSN features. As a sum-
mary, the mainline Linux kernel is a performant and flexible
platform to rely on for both TSN switch devices and time-
aware applications.

Acknowledgments
The authors would like to express their appreciation for János
Farkas (IEEE 802.1 TSN TG Chair and IETF DetNet Co-
chair) and Balázs Varga (IEEE 802.1 TSN TG and IETF Det-
Net main contributor) for their help in clarifying the termi-
nology and improving the readability of the paper. They also
want to say thanks to Vladimir Oltean and Vinicius-Costa
Gomes for their help on the netdev mailing list, quickly re-
sponding to our questions and to András Bogár for his valu-
able comments on the text.



(a) sleep scheduled transmission (b) hardware offloaded ETF

Figure 2: The differences between the receiving timestamps observed by the listener NIC’s PHC

(a) Linux bridge (b) AF XDP (c) XDP

Figure 3: The observed jitter at the receiver with different software switching methods

References
[1] “IEEE Time-Sensitive Networking (TSN) Task Group,” ac-

cess.: 2022-09. [Online]. Available: https://1.ieee802.org/tsn/

[2] “IETF Deterministic Networking (DetNet) Working
Group,” access.: 2022-09. [Online]. Available:
https://datatracker.ietf.org/wg/detnet/about/

[3] “Project page of iproute2,” access.: 2022-09. [Online].
Available: https://github.com/shemminger/iproute2

[4] “Distributed Switch Architecture, netdev 2.1,”
2017, access.: 2022-09. [Online]. Avail-
able: https://legacy.netdevconf.info/2.1/papers/distributed-
switch-architecture.pdf

[5] “net: introduce generic switch devices sup-
port,” access.: 2022-09. [Online]. Available:
https://git.kernel.org/torvalds/c/007f79

[6] “IEEE 1588-2019,” access.: 2022-09. [Online]. Available:
https://standards.ieee.org/ieee/1588/6825/

[7] “Project page of linuxptp,” access.: 2022-09. [Online].
Available: https://github.com/richardcochran/linuxptp

[8] “IEEE 802.1AS-2020,” access.: 2022-09. [Online]. Available:
https://standards.ieee.org/ieee/802.1AS/7121/

[9] “ptp: add ptp virtual clock driver frame-
work,” access.: 2022-09. [Online]. Available:
https://git.kernel.org/torvalds/c/5d43f95

[10] “ptp: Support hardware clocks with additional free run-
ning cycle counter,” access.: 2022-09. [Online]. Avail-
able: https://lore.kernel.org/netdev/20220501111836.10910-
1-gerhard@engleder-embedded.com/T/

[11] “linuxptpt: Support for virtual clocks,” access.: 2022-09.
[Online]. Available: https://www.mail-archive.com/linuxptp-
devel@lists.sourceforge.net/msg05408.html

[12] “IEEE 802.3br-2016,” access.: 2022-09. [Online]. Available:
https://standards.ieee.org/ieee/802.3br/5814/

[13] “IEEE 802.1Qbu-2016,” access.: 2022-09. [Online]. Avail-
able: https://standards.ieee.org/ieee/802.1Qbu/5464/

[14] “ethtool: Add support for frame preemp-
tion,” access.: 2022-09. [Online]. Available:
https://lore.kernel.org/netdev/20220520011538.1098888-
1-vinicius.gomes@intel.com/T

[15] “ 802.1Q Frame Preemption and 802.3 MAC Merge
support via ethtool ,” access.: 2022-09. [Online]. Available:
https://lore.kernel.org/netdev/20220816222920.1952936-1-
vladimir.oltean@nxp.com/T



[16] “ IEEE 802.1CB-2017 ,” access.: 2022-09. [Online].
Available: https://standards.ieee.org/ieee/802.1CB/5703/

[17] “ net: qos: introduce a frer action to imple-
ment 802.1CB ,” access.: 2022-09. [Online]. Avail-
able: https://lore.kernel.org/netdev/20210928114451.24956-
1-xiaoliang.yang 1@nxp.com/

[18] “ IEEE 802.1Qci-2017 ,” access.: 2022-09. [Online].
Available: https://standards.ieee.org/ieee/802.1Qci/6159/

[19] “ Introduce a flow gate control action and ap-
ply IEEE ,” access.: 2022-09. [Online]. Avail-
able: https://lore.kernel.org/netdev/20200501005318.21334-
1-Po.Liu@nxp.com/

[20] “ IEEE 802.1Qbv-2015 ,” access.: 2022-09. [Online].
Available: https://standards.ieee.org/ieee/802.1Qbv/6068/

[21] “ net/sched: Introduce the taprio sched-
uler ,” access.: 2022-09. [Online]. Avail-
able: https://lore.kernel.org/netdev/20180929005943.12928-
1-vinicius.gomes@intel.com/T

[22] “ IEEE 802.1Qch-2017 ,” access.: 2022-09. [Online].
Available: https://standards.ieee.org/ieee/802.1Qch/6072/

[23] “ Project page of isochron ,” access.: 2022-09. [Online].
Available: https://github.com/vladimiroltean/isochron

[24] “ Scheduled packet Transmission: ETF
,” access.: 2022-09. [Online]. Avail-
able: https://lore.kernel.org/netdev/20180703224300.25300-
1-jesus.sanchez-palencia@intel.com/


