Cross-Layer Telemetry Support in Linux Kernel

Justin Iurman, Benoit Donnet
Université de Liege, Montefiore Institute — Belgium

September 27, 2022

Abstract

This paper introduces Cross-Layer Telemetry
(Crt), presents its new version as an improvement
and explains how its support is added to the Linux
kernel. CLT is a way to combine in-band teleme-
try and Application Performance Management (APM,
based on distributed tracing with OpenTelemetry)
into a single monitoring tool providing a full network
stack observability. Using CLT, APM traces are corre-
lated with corresponding network traffic, providing a
better view and a faster root cause analysis in case
of issue. This new version improves the correlation
accuracy. In this paper, we describe the CLT imple-
mentation (both for kernel and user spaces) and we
evaluate the CLT ecosystem based on a use case. All
CLT code is available as open source.

1 Introduction

The last decade has witnessed a strong evolution of
the Internet: from a hierarchical, relatively sparsely
interconnected network to a flatter and much more
densely inter-connected network [11, 5, 27] in which
hyper giant distribution networks (HGDNs, - e.g.,
Facebook, Google, Netflix) are responsible for a large
portion of the world traffic [2]. HGDNs are becoming
the de-facto main actors of the modern Internet. The
very same set of actors have fueled the move to very
large data center networks (DCNs), along with the
evolution to cloud native networking.

Throughout the years, multiple Operations, Ad-
ministration, and Maintenance (OAM) tools have
been developed, for various layers in the protocol

stack [23], going from basic traceroute to Bidirec-
tional Forwarding Detection (BFD [22]) or recent
UdpPinger [10] and Fbtracert [9]. The measurement
techniques developed under the OAM framework have
the potential for performing fault detection and iso-
lation and for performance measurements.

Telemetry information (e.g., timestamps, sequence
numbers, or even generic data such as queue size and
geolocation of the node that forwarded the packet)
is key to HGDNs, DCNs, and Internet operators
in order to tackle two particular challenges. First,
the network infrastructure must be running all the
time, even in the presence of (unavoidable) equip-
ment failure, congestion, or change of traffic patterns.
Said otherwise, it means that HGDNs and DCNs
must carefully engineer their network infrastructure
to be able to ensure that issues are responded to
within seconds. Network monitoring and measure-
ments are thus of the highest importance for HGDNs
and DCNs, though the available tools and meth-
ods [10, 9] have not kept up with the pace of growth
in speed and complexity. Second, customers want to
enjoy their content in whatever context they access
it: at home behind a DSL gateway, on a mobile de-
vice in public transportation, at home on multiple
devices at the same time, etc. In addition, customers
want to experience their content with the highest pos-
sible quality and the lowest delay without interfer-
ing with the network. Consequently, HGDNs, DCNs,
and classical Internet operators must carefully engi-
neer their network to ensure the highest Quality-of-
Experience (QoE) on the user side, especially with
the emergence of microservices.

Modern cloud-native applications rely on microser-

vices, namely independent services providing a spe-
cific core function. A single request in an application
can invoke a lot of microservices interacting with each
other. As a matter of fact, it is more and more dif-
ficult to monitor and isolate a problem, e.g., a slow-
down of a service. This is why Application Perfor-
mance Management (APM, based on distributed trac-
ing tools following OpenTelemetry [25] standards) is
useful. It provides a way to observe and understand
a whole chain of events in a complex interaction be-
tween microservices. However, such APM appears as
useless when the problem is not application related
but rather located at the network level.

To solve such a problem, this paper introduces
Cross-Layer Telemetry (CLT), i.e., device level, flow
level, packet level, and application telemetry at the
same time. CLT combines APM with network teleme-
try as provided by In-Situ OaM (IoaMm [3]). In a
nutshell, [oAM gathers telemetry and operational in-
formation along a path, within packets, as part of
an existing (possibly additional) header. It is en-
capsulated in IPv6 packets as an IPv6 Hop-by-Hop
extension header [4, 1]. The purpose of APM is to cap-
ture and export data from cloud native applications,
to receive tracing telemetry data and to provide pro-
cessing, aggregating, data mining, and visualizations
of that data. From the HGDNs and DCNs perspec-
tive, CLT offers an integrated view of the network
(APM traces are correlated with network telemetry in-
formation), leading so to a careful and efficient inte-
grated network monitoring.

2 Application Performance

Management

OpenTelemetry [25] is a public and free APM tool,
based on distributed tracing, giving operators the
possibility to monitor their microservices and get
some profiling data such as operation name, timing,
tags, and logs. It is also a standard. Distributed
tracing relies on two concepts: traces and spans. A
trace ”is a data/execution path through the system
and can be thought of as a directed acyclic graph of
spans” [20]. A span "represents a logical unit of work

Spans

Figure 1: Relationship between a trace and spans.

that has an operation name, a start time of the op-
eration, and a duration. Spans may be nested and
ordered to model causal relationships” [20]. Fig. 1 il-
lustrates these concepts. For example, span A could
be an HTTPS request, an algorithm that loops over a
list, or anything else one wants to monitor in the ap-
plication. In this case, the trace represents all spans:
A+ B+ C+ D+ E. Traces and spans are gener-
ated within the application by the OpenTelemetry
client library, according to the monitoring instruc-
tions added to the code. Those traces and spans are
sent to a remote collector via the OpenTelemetry ex-
porter. The back-end collector (e.g., Jaeger [21])
receives traces and runs them through a processing
pipeline, i.e., validates traces, indexes them, performs
any transformations, and finally stores them [20]. At
the end, traces can be retrieved from storage and dis-
played thanks to a Ul service for data visualization.

3 CLt Implementation

Let us assume an HTTPS request to be monitored.
With APM (e.g., distributed tracing tools following
OpenTelemetry standards), one obtains useful infor-
mation on the application level based on application
traces (i.e., Lb — L7). However, picture now a sit-
uation in which one notices an abnormal execution
time (e.g., too long). With APM, it is impossible to
exactly understand why it happens. Worst, if the
problem is not application related but, rather, on the
link or on intermediate hops (e.g., due to congestion),
one will be stuck wondering why the request takes so

long as the application side looks fine. A better so-
lution would be to show how the request progresses
hop-by-hop through the network and identify (poten-
tial) bottlenecks. Indeed, by correlating network level
telemetry (i.e., network packets) with APM traces, one
would give operators a far more complete tool to deal
with problems. This is exactly the purpose of Cross-
Layer Telemetry (CLT), as it makes the entire net-
work stack (i.e., from L2 — L7) visible to monitoring
tools, instead of the classic application level visibility.

3.1 Crr History

To obtain full stack visibility, network telemetry
packets must be correlated with APM traces. How-
ever, such a correlation based on trace and span ids
is not as easy as it seems. It may appear enough, at
first glance, to inject both application trace and span
identifiers in the data plane. Unfortunately, a span
identifier can vary even within a single TCP connec-
tion as multiple requests can go over it, meaning it is
never going to be a single span identifier per socket.
For instance, one could have two HTTPS requests to
monitor and so two different spans, one for each re-
quest. Worse, one could use the same socket for all
clients and keep it open. In this case, multiple traces
would go through the same socket. Therefore, in-
jecting both trace and span identifiers at socket cre-
ation would not be enough. Indeed, the injection
must happen at sending time, and so for each request
on the socket. A natural idea that comes to mind is
therefore to overload the existing send system calls.
This solution would work but, unfortunately, it would
be too disruptive as it would require both 1ibc and
high-level languages to be modified accordingly. As
a consequence, the only viable alternative is to use
netlink [24] to pass the identifiers to the kernel be-
fore sending data.

The first version, let us call it the socket annotation
technique, uses a netlink call to pass the identifiers
to the kernel, which in turn copies them into the cor-
responding sock structure. Each packet going out of
this socket would therefore carry the identifiers. Al-
though this solution was working really well, it had a
non-negligible downside, namely packets that could
be marked with the wrong identifiers due to, e.g.,

Application

Application
Trace } teeeees '

user space

H '
i Trace-ID '
OTEL i Span-ID '
exporter v :
'
1
'
'

'
'
'
'
'
'
'
'
'
'
'
'

10AM agent '
'
'
|
1
'
'
'
'
'
'

kemnel space

1 kemel space

J
HTTPS request
'

Application Trace
(grpe) (grpe)

1 Correlation i
' Backend collector ' (grpc) '
i (e.g., Jacger) r i

Figure 2: Cross-Layer Telemetry architecture.

send
" \ tep_sendmsg
sendto —

sendmsg /
sendmmsg

—> sock_sendmsg —» sock_sendmsg_nosec — inet6_sendmsg

udpv_sendmsg

Figure 3: Call graph.

congestion in a queue. Indeed, a packet for the an-
notation X could still be in the queue when another
annotation Y erases the previous one, which would
make the packet annotated with Y instead of X as
soon as it is sent out.

The second version, let us call it the socket buffer
annotation technique (which is the current one), deals
with the aforementioned problem. Fig. 2 illustrates
its architecture and is explained in Sec. 3.2 and
Sec. 3.3.

3.2 Kernel Space

The kernel patch is available on the CLT repos-
itory [17] and is quite straightforward. Briefly, we
extend both sock and sk_buff structures with two
fields: (i) a 128-bit field for the trace id; and (i7)
a 64-bit field for the span id. A netlink call
is added to pass identifiers (trace and span IDs)
from user space to the kernel right before send-
ing data, and so for a specific socket file descrip-
tor. As for the first version, these identifiers are
copied inside the corresponding sock structure. But
now, as soon as a packet is created to send data
through the annotated socket, these identifiers are
also copied to the socket buffer (skb) itself. Fig. 3
shows the call graph of send system calls where we

0 16 24 31
Namespace-ID
ToaMm-Trace-Type

| NodeLen

Flags

RemainingLen

| Reserved

Trace ID (128 bits)

Span ID (64 bits)

Figure 4: Enhanced IoaAM PTO Header.

respectively identified tcp_sendmsg (more precisely
tcp_sendmsg_locked) for TCP and udpv6_sendmsg
(more precisely __ip6_make_skb) for UDP to be the
two functions that create socket buffers. Thanks to
that, we make sure that a socket buffer is anno-
tated directly and correctly, instead of waiting for
the packet to be sent out through the socket.

CLT relies on I0AM, in particular on the IoAM Pre-
allocated Trace Option-Type (PT0). This option has
been designed for carrying telemetry data within a
Hop-by-Hop Extension Header. Typically, IoAM is
deployed in a given domain, between the INGRESS
and the EGRESS or between selected devices within
the domain. Each node involved in IOAM may in-
sert or update an IoAM header. IoAM data is added
to a packet upon entering the domain and is removed
from the packet when exiting the domain. I0AM data
fields are associated to IOAM mamespaces, that are
identified by a 16-bit identifier. They allow devices
that are ToAM capable to determine whether ToAM
option headers need to be processed, and also pro-
vide additional context for IoAM data fields. IoAM
namespaces can be used by an operator to distinguish
different operational domains. Support for the IoAM
PToO (the space for IoaM data is pre-allocated in the
packet header at the INGRESS for the IoAM domain)
is available in the kernel since release 5.15. The IoAM
PTO can carry data such as, e.g., ingress and egress
interface IDs, timestamps, queue size, buffer occu-
pancy, etc. As such, IoAM PTO is the perfect candi-
date to embed both span and trace IDs as it not only
carries both identifiers by extending the header, but
it also collects telemetry data at the same time, and
so for each hop on the path. Fig. 4 illustrates how

span = tracer.start_span(’test’)

CLT.enable(sockfd, span.trace_id, span.span_id)

span.start_time = time.time()

resp = https.request(’GET’, ’/test’) # HTTPS
request to monitor

span.end()

6 CLT.disable(sockfd)

Bw N e

o

Figure 5: Example of tracing code with CLT.

IoaM PTO header is extended to support span and
trace IDs.

3.3 User Space

A Crr client library is provided [17] for user space.
It is only available for python clients at the moment,
but could easily be implemented for other languages
depending on the needs. The CLT client library en-
capsulates the new netlink call logic to pass identi-
fiers to the kernel. An example of code to monitor
an HTTPS request with OpenTelemetry is shown in
Fig. 5. One can see the difference between the classic
solution and the CLT one. With the latter, only two
additional code lines are required, i.e., lines 2 and 6.
Further, this technique offers a good “isolation”. In-
deed, IOAM traces are included and correlated with
APM traces only for what should be monitored (i.e.,
an HTTPS request in this example, not any other TCP
packets such as an ACK), which is cleaner on the UI
side as it exactly reflects the monitored block of code
from an application point of view. The only down-
side is that most programming languages do not eas-
ily expose the socket layer from the application layer,
for example with an HTTPS object to send requests,
due to how implementation is layered. Therefore, in
the application code, the socket must be manually
injected inside such an object, or the opposite to get
back the socket file descriptor used by such object.
This hack seems easier for some languages than for
others, though.

As previously mentioned, CLT relies on IoAM PTO
to carry both identifiers along with telemetry data.
Therefore, it must be configured with the iproute2

Pre-allocated
space

N
Il EN Il EN

sl e e
eth0>~——ethl ethQ ~—

S~——%¢th0

Figure 6: IoAM PTO example. “H” refers to the
packet header, while “P” is the payload. Telemetry
data (red and green) is inserted in the pre-allocated
space. Router A is the INGRESS of the I0AM domain,
while C' is the EGRESS.

$ sysctl -w net.ipv6.conf.ethO.ioam6_enabled=1

2 $ ip ioam namespace add 123

3 $ ip -6 route add db02::/64 encap ioam6 trace
prealloc type 0x800000 ns 123 size 12 dev ethO

Figure 7: IoAM command-line configuration.

tool that has IoAM PTO support. Fig. 6 illustrates
how the IoaAM PTO works. To set it up, the oper-
ator must configure an I0OAM domain between the
three nodes. In this case, I0AM is only used from
A (INGRESS) to C' (EGRESS) but not on the reverse
path, meaning IoAM must be allowed for both B.eth0
and Cl.eth0. This is easily achieved through sysctl
(see Line 1 on Fig. 7). Then, an I0AM namespace
(e.g., ID 123) is created on each node (see Line 2 on
Fig. 7). Finally, A must be configured to insert an
IoaM PTO in its packets when C (e.g., db02::2) is
the destination (see Line 3 on Fig. 7). As a result,
when C' is the destination, A pre-allocates room for
the IoAM trace and inserts its IoAM data correspond-
ing to the red block in Fig. 6. IoAM PTO is carried
inside an IPv6 Hop-by-Hop Extension Header. Upon
receiving packets with an IoamM PT0O, B in turn in-
serts its IoaM data (the green block on Fig. 6). C
does the same as B, but it is not visible as C is the
destination. In the end, the full IoAM trace is avail-
able on C for processing.

3.4 Telemetry Data Collection and
Processing

In this telemetry ecosystem, we also provide an
IoAaM agent [15] to collect and report IOAM traces.
Basically, this is a per-interface sniffer for Ipv6 pack-

ets that filters a Hop-by-Hop Extension Header con-
taining an [oAM PTO. After parsing, each JOAM trace
is represented by the IoaM Trace API [18] defined
with Protocol Buffers v3 [12]. The IoAM agent can
be run in two different modes: output or report (de-
fault mode). The output mode prints IOAM traces in
the command-line interface, while the report mode
sends them to a collector through grpc [13].

Finally, we provide an IoaMm collector [19], a
Golang interface between the IoAM agent and a back-
end collector (in this case, Jaeger). It enhances a
span with IoAM data received from the IoAM agent
and reports it to the Jaeger collector. The latter will
in turn correlate the classic span with the received-
enhanced one. Note that the IoaAM collector could
be implemented in other languages depending on the
needs, as well as for other back-ends than Jaeger.

3.5 Summary

Fig. 2 illustrates the interactions between each
component in CLT. Based on the code snippet in
Fig. 5, let us illustrate what happens step by step.
Line 1 uses the OpenTelemetry client library to cre-
ate a new span called “test” and to add it to the cur-
rent trace. Line 2 uses the CLT library to inject both
trace and span identifiers on the underlying socket
through netlink. From now on, any packet created
for this socket will include the trace and span identi-
fiers. Line 3 defines the start of the span by storing
the current timestamp. Line 4 executes an HTTPS re-
quest (the instruction to be monitored). Since the
IoAM PTO insertion is configured, IoaAM will be in-
cluded in the network traffic. On the receiver side,
the IoAM agent parses and gathers IOAM traces and
reports them to the IoAM collector with grpc. Line 5
is reached as soon as the HTTPS request from line 4
is finished, i.e., a response is received. The span is
stopped and the monitoring of the HTTPS request is
done. The OpenTelemetry client library sends the
trace to the OpenTelemetry exporter, that in turn
sends it to the back-end collector (here, Jaeger) for
storage. Line 6 clears the effect of Line 2. The trace
representing the HTTPS request can be observed with
the Jaeger Ul and now contains per-hop telemetry
data.

4 Evaluation

This section covers the evaluation of CLT based on
a use case described in Sec. 4.1. Then, we discuss
the results in Sec. 4.2 as well as the impact of the
additional cost introduced by CLT.

4.1 Methodology

Picture a situation where clients use a mobile ap-
plication requiring authentication. Therefore, the ap-
plication sends an HTTPS request towards the corre-
sponding remote API, with the username and pass-
word entered by the client. The receiving API entry
point hides the business logic behind each request.
In this case, a sub-request to authenticate the client
is sent to a server. Each sub-request sent by the
API entry point is monitored by OpenTelemetry, and
Jaeger with ElasticSearch [8] as the back-end.

Suddenly, huge delays during the login process are
reported by multiple users. Consequently, the opera-
tor consults the monitoring tool where each result is
stored and sees that login traces are showing larger
execution times than usual. Surprisingly enough af-
ter a quick investigation, both the server and its local
database look fine at first glance. The operator de-
cides to use CLT, and so enables IOAM on the entry
point to attach network telemetry to OpenTelemetry
traces.

Fig. 8 illustrates the scenario previously described.
We use docker [6] to build the topology and docker-
compose [7] to ease the configuration between each
container. Each topology component is represented
by a docker container. The API entry point’s appli-
cation handler uses the OpenTelemetry client library
to monitor each critical part of the code. It also uses
the CLT library to inject both the trace and span
identifiers in the underlying socket, which one is kept
open for all connections. Still on the entry point, the
OpenTelemetry exporter reports traces to a back-end
collector (here, Jaeger collector). The I0AM agent
runs on the server and reports every I0AM trace to
the IoAM collector. The administrator uses Jaeger
as a web interface to observe traces stored in the
database. Elasticsearch is used as the database to
store Jaeger traces. IPv6 is deployed between the

(Ipn;)\“”’f —
v6 ~
IOAM Domain b'\""

¢

HITPS Request
| HITPS Request]
—]
HTTPS Response
ient

10AM
Collector

Figure 8: Use case example

‘ $ tc gdisc add dev ethl root netem delay 150ms

Figure 9: Traffic Control (tc) command to add a
150ms delay on an interface.

API entry point and the server. IOAM is enabled
and configured on each node within the domain. The
entry point is configured to insert IoAM PTO inside
packets when the destination is the server. This re-
producible use case is available on the CLT reposi-
tory [17].

In order to simulate a low-level issue, we introduce
artificial delay to mimic a congestion on the router
between the entry point and the server, thanks to
the Traffic Control (tc) tool [26]. Fig. 9 shows
the command used to add a delay of 150ms on the
router interface towards the server, which means the
RTT will suffer from a 300ms increase.

In our experiment, we generate 200 HTTPS requests
per second, over a period of four minutes. This time
frame is divided in four slices (one minute each): the
first minute represents a normal situation where ev-
erything runs fine. The congestion (additional 150ms
delay) is introduced in the second minute. The
third minute includes the problem investigation by
enabling CLT. Finally, the last minute represents the
come back to a normal situation, after the problem
has been fixed by the operator. During the four min-
utes experiment, we measure the RT'T of each HTTPS
request.

September 3 2022, 10:16:32 314.14ms 1 Depth2

Service & Operation ~ > v % ous 70.50ms

- | GLT-demo o

157.07ms 235.6ms 314.14ms

CLT-demo icam-spa.

ioam-span
v Tags
iaeger

e1 HopLimit=64; Id=1; IngressId=65535; QueueDepth=o;

2 HopLimit-63; Td-2; Ingresstd-21 | Qusuedepth- 1116]

node3 HopLimit=62; Id=3: IngressId=31: OueueDepth=6:

van- L ace

When enabling the IoAM PTO insertion on the API
entry point (i.e., enabling CLT), the operator requires
the following IoAM data to be included in the trace:
the IoAM node-id, both INGRESS id and EGRESS in-
terface IDs, and the EGRESS queue depth. Indeed,
the latter is included because the operator suspects
a congestion somewhere on the path. Of course, ad-
ditional IoAM data could be required to cover and
detect more problems when one has no clue of the
issue.

4.2 Results

Fig. 10 shows a screenshot of the Jaeger UI with a
span representing a login request that was randomly
selected among all login requests during the third
minute of the experiment (i.e., CLT enabled). The
ioam-span is the enhanced span attached to the clas-
sic one. Thanks to the latter, the operator quickly
detects that the EGRESS queue of the router is in-
creasing (see the red rectangle), meaning there is a
congestion. An action can then be applied to fix
the problem, e.g., by re-balancing traffic over queues.
Without Crr, the operator would have faced a lot
more difficulties in performing root cause analysis.

The experiment performed also allows us to mea-
sure the impact of CLT (i.e., the injection of trace and
span identifiers on the socket through netlink and the
IoaM PToO header insertion). Fig. 11 shows the RTT
measured during the four minutes experiment. Dur-
ing the second minute, one can clearly see that the
RTT has increased by 300ms due to the simulated
congestion. The key part is the third minute, during
which CLT is enabled. Indeed, the distribution on the
graph looks the same for both the second and third

CLT-demo ' D 15ps. 102.47ms

(Entrypoint)
(Router)
(Server)

normal

2 estion normal
situation T

S con lormal
congestion | OR8 situation

0 30 60 90 120 150 180 210 240
Time (sec.)

Figure 11: RTT measurement, 200 requests/second,
four steps with congestion.

normal situation Cu normal $ituation

0 30 60 90 120 150 180
Time (sec.)
Figure 12: RTT measurement, 200 requests/second,
three steps without congestion.

minute, demonstrating that CLT has little impact. In
order to make sure that CLT is really efficient, we also
perform a similar experiment in three steps without
congestion. The objective is to see how CLT behaves
without congestion and so with more traffic. Fig. 12
shows the result. Again, one can see that the distri-
bution on the graph looks nearly the same, both with
and without CLT.

Therefore, one can say that CLT is quite efficient
since the introduced overhead is almost just a netlink
call. The major overhead is due to IoAM and was
previously studied [14]. The benefits of CLT for op-
erators are a huge gain of time and a more complete
tool to detect low-level issues that are not applica-
tion related. It is also worth mentioning that the
CLT solution is generic enough to integrate other al-
ternatives to Jaeger. Indeed, only the IoAM collector
is dependent on the back-end tool and would need a
few modifications, which is not the case for both the
CrLT client library nor the IoAM agent.

5 Standardization

As previously mentioned, CLT relies on I0OAM to
kill two birds with one stone: (i) I0AM provides per-
hop telemetry data and (i) I0AM carries APM trace
and span identifiers. The latter is achieved by ex-
tending the IoAM PTO header. While it might be
perfectly fine for a proof-of-concept, it would require
something less hacky to go through standardization
and be widely adopted. A recent draft [16] proposes
a way to carry generic identifiers in IPV6 packets,
which could be a perfect fit for CLT. Indeed, the cor-
relation between APM traces and network traffic would
not be tied to IoAM anymore. One could use IoAM
alone, or the correlation alone, or both at the same
time (two distinct options in a Hop-by-Hop Extension
Header). In this context, a solution with both at the
same time seems obviously better in most cases, as
it provides more data and so more chances to spot
an issue. But still, one might only want the corre-
lation without per-hop telemetry data, for whatever
reason. And, even in that specific case without I0OAM
for whatever reason not to use I0AM, one could end
up with something equivalent to IoAM by running an
agent on each hop and report correlations that would
include some local, similar-to-IOAM, metrics.

From a kernel point of view, it would mean insert-
ing the aforementioned CLT Option in every IPv6
packets (inside the Hop-by-Hop Extension Header),
as soon as CLT is enabled on a specific socket by an
application, and so even if other options are already
inserted in the Hop-by-Hop.

6 Conclusion

This paper introduced Cross-Layer Telemetry
(Crr), a new and efficient solution to enhance dis-
tributed tracing tools based on OpenTelemetry stan-
dards, by correlating Application Performance Man-
agement (APM) traces with network telemetry infor-
mation. This paper also explained how CLT support
was added to the Linux kernel. CLT leverages In-Situ
OaM (IoaM) to make the entire network stack (L2 —
L7) visible for distributed tools, instead of the classic
application level visibility. We do believe that CLT
solves challenges from the microservice tracing world
and brings a more complete tracing solution to opera-
tors to solve lower level issues that are not necessarily
application related. Therefore, a kernel adoption of
CLT support would be a huge step forward.

Source code

The CLT repository gathers all the source code
needed for the implementation described in this pa-
per, as well as an explanation on how it works, and
a video demo. Everything is freely available here:
https://github.com/Advanced-0bservability/
cross-layer-telemetry

Acknowledgments

This work has been funded by a Cisco grant CG#
2713379 and the CyberExcellence project funded by
the Walloon Region, under number 2110186.

References

[1] Bhandari, S., and Brockners, F. 2022. In-situ OAM
IPv6 Options. Internet Draft (Work in Progress)
draft-ietf-ippm-ioam-ipv6-options, Internet Engineer-
ing Task Force.

[2] Bottger, T.; Cuadrado, F.; Tyson, G.; Castro, I.; and
Uhlig, S. 2018. Open Connect Everywhere: A Glimpse
at the Internet Ecosystem Through the Lens of the
Netflix CDN. ACM SIGCOMM Computer Communi-
cation Review 48(1).

[3] Brockners, F.; Bhandari, S.; and Mizrahi, T. 2022.
Data Fields for In Situ Operations, Administration,
and Maintenance (IOAM). RFC 9197, Internet En-
gineering Task Force.

[4] Deering, S., and Hinden, R. 2017. Internet Protocol,
Version 6 (IPv6) Specification. RFC 8200, Internet
Engineering Task Force.

[65] Dhamdhere, A., and Dovrolis, C. 2010. The Inter-
net is Flat: Modeling the Transition from a Transit
Hierarchy to a Peering Mesh. In Proc. ACM CoNEXT.

[6] Docker. Empowering App Development for Develop-
ers. See https://www.docker.com/.

[7] Docker. Overview of Docker Compose. See https:
//docs.docker.com/compose/.

[8] Elastic. The Official Distributed Search and
Analytics Engine. See https://www.elastic.co/
elasticsearch/.

[9] Facebook. fbtracert. See https://github.com/
facebook/fbtracert.

[10] Facebook. UdpPinger.
facebook/UdpPinger.

See https://github.com/

[11] Gill, P.; Arlitt, M.; Li, Z.; and Mahant, A. 2008.
The Flattening Internet Topology: Natural Evolution,
Unsightly Barnacles or Contrived Collapse? In Proc.
Passive and Active Measurement Conference (PAM).

[12] Google. 2008. Protocol Buffers — Google’s
data interchange format. See https://github.com/
protocolbuffers/protobuf.

[13] grpc. A High Performance, Open Source Universal
RPC Framework. See https://grpc.io.

[14] Iurman, J.; Donnet, B.; and Brockners, F. 2020.
Implementation of Ipv6 IoaM in Linux Kernel. In
Proc. Technical Conference on Linux Networking (Net-
dev 0x14).

[15] Turman, J. 2021. ToamAgent for Python3.
See https://github.com/Advanced-0Observability/
ioam-agent-python/tree/clt.

[16] Iurman, J. 2022a. Carrying a Generic Identifier in
IPv6 packets. Internet Draft (Work in Progress) draft-
iurman-6man-generic-id-00, Internet Engineering Task
Force.

[17] Turman, J. 2022b. Cross Layer Telemetry.
See https://github.com/Advanced-0Observability/
cross-layer-telemetry.

[18] Turman, J. 2022c. IoaMAPI with Pro-
tocol Buffers v3. See https://github.com/
Advanced-Observability/ioam-api/tree/clt.

[19] Turman, J. 2022d. IoamCollector
(golang interface for Jaeger). See https:
//github.com/Advanced-0bservability/
ioam-collector-go- jaeger.

[20] Jaeger. Architecture. See https://www.
jaegertracing.io/docs/1.22/architecture/.

[21] Jaeger. Open-Source, End-to-End Distributed Trac-
ing. See https://www.jaegertracing.io.

[22] Katz, D., and Ward, D. 2010. Bidirectional Forward-
ing Detection (BFD). RFC 5880, Internet Engineering
Task Force.

[23] Mizrahi, T.; Sprecher, N.; Bellagamba, E.; and
Weingarten, Y. 2014. An Overview of Operations,
Administration, and Maintenance (OAM) Tools. RFC
7276, Internet Engineering Task Force.

[24] netlink. netlink(7) — Linux manual page. See
https://man7.org/linux/man-pages/man7/netlink.
7.html.

[25] OpenTelemetry. Effective Observability Requires
High-Quality Telemetry. See https://opentelemetry.
io.

[26] tc. tc(8) — linux manual page. See https://man7.
org/linux/man-pages/man8/tc.8.html.

[27] Zhao, H., and Bi, J. 2013. Characterizing and Anal-
ysis of the Flattening Internet Topology. In Proc. In-
ternational Symposium on Computers and Communi-

cations (ISCC).

