
Pushing OpenVPN down the stack: Data Channel Offload (DCO)

Antonio Quartulli
OpenVPN Inc.

Pleasanton CA, USA
antonio@openvpn.net

Abstract

OpenVPN is a userspace software responsible for creating an
encrypted tunnel between two peers (peer-to-peer mode) or a
central server and multiple clients (peer-to-multipeer mode).
Until now both the control and the data planes were imple-
mented in userspace, leading to notable performance penalty.
The technique described in this paper, known as data channel
offloading, consists in moving the data plane (i.e. user pay-
load processing) to kernel space in order to reduce context-
switching and thus improve the measurable tunnel throughput.

Keywords
VPN, tunnel, crypto, networking, device driver, netlink, ac-
celeration, offload

Introduction
OpenVPN Data Channel Offload (ovpn-dco for brevity) is
a Linux kernel module that implements the OpenVPN data
plane (i.e. the fast path). By keeping user payloads in
kernelspace, unneeded context-switches and expensive data
copies are avoided, thus increasing performance, which re-
sults in a notable throughput improvement for the user.

This novel kernel module has been developed with sim-
plicity in mind, therefore only a small subset of the Open-
VPN features was selected for being implemented in ovpn-
dco. Features of dubious gain and legacy knobs that are not
meaningful anymore (i.e. compression) will not be ported to
kernel space.

Architecture
The OpenVPN software in userspace is still the main ac-
tor as it is responsible for establishing a connection with a
peer/server and perform:

• user authentication

• X509 certificates exchange

• parameters negotiation

• session key derivation

All the functions mentioned above happen on the control
plane and it is important to point out that none of those is im-
plemented in kernelspace. This is key to ovpn-dco as it shows

how non-performance-critical tasks are kept in userspace,
thus limiting the kernel code complexity and attack surface.

After a connection has been established, userspace informs
ovpn-dco about the new peer. Along with various attributes,
also the socket used to communicate with the other entity is
passed to ovpn-dco. From this moment on, userspace is ex-
pected to not use this socket anymore when sending/receiving
control packets to/from this peer.

Further communication on the control plane (like periodic
key renegotiations) has to happen using the provided Netlink
API, as described in the related section about userspace APIs.

All kernel-to-userspace messages are exchanged by means
of GENL (Netlink) API.
Creating and destroying an interface is instead performed via
RTNL.

Packet processing
Encapsulation and encryption
OpenVPN is known for supporting a variety of ciphers (as
provided by the system SSL library), however, with the goal
of keeping ovpn-dco as slim as possible, only AES-GCM
and ChaCha20Poly1305 are currently supported by the ker-
nel module implementation. Support for other AEAD ciphers
may be easily added.

After the protocol handshake is completed and both peers
have generated a session key, the latter is communicated by
the userspace software, along with the selected algorithm and
a nonce, to ovpn-dco. The whole state required to perform
encryption and decryption operations is then generated and
stored in kernel.

Thanks to the flexibility provided by the internal ovpn-dco
data structures, each peer can be potentially configured with
a different cipher, thus allowing userspace to pick the best
among the supported ones.

TX and RX paths
Encryption and decryption happens respectively in the TX
and RX traffic path. For each direction a ptr-ring is used to
store packets waiting to be handled, while a worker picks one
at a time and processes them.

During transmission packets are encrypted and then imme-
diately forwarded to the destination peer using the udp-tunnel



APIs.
On the other hand, received packets are first decrypted

and then queued for delivery to the networking interface via
NAPI.

Routing
The OpenVPN userspace software can function in two
modes, and so does ovpn-dco: peer-to-peer or multi-peer.
Peer-to-peer mode is activated when a host wants to connect
to a server (in this case the host is also called ‘client’) or when
it wants to connect to another peer-to-peer host.
In this configuration ovpn-dco accepts only one peer and any
attempt to install a second entry simply results in substituting
the previously existing one.
This setup is the simplest from the routing perspective, be-
cause there is no routing at all: any packet sent to the net-
working interface is encapsulated/encrypted and sent to the
configured peer regardless of the actual destination. It doesn’t
matter if on the other side there is another peer or a server.

Multi-peer mode is instead activated when OpenVPN runs
as a server. Under this configuration ovpn-dco can accept up
to 4096 peers, as long as they have a unique ID and VPN IP
(both v4 and v6).
In this case, upon a packet entering the networking interface,
a destination peer must be selected among the available ones.
To do so we have two possibilities:

1. the packet destination IP matches the VPN IP of a known
peer: the latter is selected as destination;

2. the packet destination IP does not match the VPN IP of
any known peer: the system routing table is searched for a
route including the destination IP;

• if no route is found, the packet is dropped (no route to
host);

• if a route is found, the nexthop is retrieved and is com-
pared to the VPN IP of all known peers: the matching
peer is selected as destination.

The approach explaned at point 2 above allows ovpn-dco to
rely on the system routing table and thus avoid implementing
a private routing mechanism. At the same time, users can
inform ovpn-dco about new routes by simply adding them to
the system routing table, as usual.

To configure ovpn-dco in peer-to-peer or multipeer
mode, a specific flag must be passed along with the RTNL
RTM NETLINK command, namely IFLA OVPN MODE,
which values can be either OVPN MODE P2P or
OVPN MODE MP. The mode is then unalterable throughout
the interface lifecycle.

Userspace API
To manage an ovpn-dco networking device, there are cur-
rently two sets of APIs that need to be used:

1. RTNL: to create and destroy interfaces of type ‘ovpn-dco’;

2. GENL (new ‘ovpn-dco’ family): to manage the OpenVPN
specific aspects.

While the RTNL API is well known and used by many
(all?) device drivers, the GENL API is specific to ovpn-dco
and thus it’s implemented in its code base.

Please note that the GENL API is not definitive and it may
still change.

GENL: ovpn-dco
GENL messages assume that an ovpn-dco interface was al-
ready created and expect its ifindex to be always specified.

Available GENL userspace to kernelspace messages are:

• OVPN CMD NEW PEER: inform about a new peer

• OVPN CMD GET PEER: retrieve data about existing
peer(s)

• OVPN CMD SET PEER: set attributes on an existing peer
(i.e. keepalive timeout)

• OVPN CMD DEL PEER: delete an existing peer

• OVPN CMD NEW KEY: configure a new key (and ci-
pher) for a peer

• OVPN CMD SWAP KEYS: swap keys stored in the pri-
mary and secondary slots

• OVPN CMD DEL KEY: delete a an existing key

• OVPN CMD REGISTER PACKET: register a userspace
listener process for receiving control packets

• OVPN CMD PACKET: send a control packet over the
wire

Among the above, the following can also be sent from ker-
nelspace to userspace:

• OVPN CMD DEL PEER: inform that a peer was deleted,
with reason (multicast)

• OVPN CMD PACKET: send a non data-packet to the reg-
istered listener process (unicast)

As previously mentioned, it should be noted that after
creating a new peer by means of OVPN CMD NEW PEER,
the socket passed down to the kernel should not
be used anymore by userspace. For this rea-
son the OVPN CMD REGISTER PACKET and
OVPN CMD PACKET messages are required to exchange
control packets with the peers.

This said, it may be possible to simplify this model and let
userspace still send/receive control packets using the socket.
This topic is open for discussion/suggestions.

GENL: documenting attributes
A novel approach, open for discussion, has been used to
declare all attributes being sent along with GENL mes-
sages. As it is possible to see in the ovpn dco.h uapi
header file (available at https://github.com/OpenVPN/ovpn-
dco/blob/master/include/uapi/linux/ovpn dco.h), attributes
are not mixed in a big enum, but rather grouped by message
that they are supposed to be attached to.

With this approach I strive to clearly document what at-
tributes are expected by each message, without requiring a
developer to dig into the ovpn-dco netlink implementation.



Userspace integrations
In order to use ovpn-dco, userspace software had to be mod-
ified to accommodate the new interface type and its manage-
ment plane.

As of now there are two software implementations that in-
tegrate with ovpn-dco:

1. OpenVPN3-Linux client:
https://github.com/OpenVPN/openvpn3-linux

2. OpenVPN2, master branch (soon to be v2.6):
https://github.com/OpenVPN/openvpn
Both are publicly available for evaluation and testing.
The (out-of-tree) ovpn-dco code can be retrieved at

https://github.com/OpenVPN/ovpn-dco .
An OpenWrt feed is also available at

https://github.com/OpenVPN/openvpn-dev-openwrt .
In this feed it is possible to find OpenVPN and ovpn-dco
both being built out of their respective master/main branch.

Performance
In this section I present results obtained by running iperf
speed tests between two Ubuntu 22.04 virtual machines run-
ning on a host equipped with an AMD Ryzen Threadripper
3970X CPU.

In order to give a meaningful interpretation to resulting
numbers, the same speed test has been performed according
to the following setups between the two VMs:

1. direct link - no tunnel at all
2. over a GRE tunnel
3. over an OpenVPN tunnel without DCO
4. over an OpenVPN tunnel with DCO

Results
Test Throughput
Direct 16.1 Gbits/sec
GRE 4.74 Gbits/sec
OpenVPN (no DCO) 713 Mbits/sec
OpenVPN (with DCO) 3.95 Gbits/sec
The first test is used to obtain an upper bound of the setup:

this is the maximum possible throughput that can be mea-
sured over the link.

The second test, with a GRE tunnel configured, gives us an-
other interesting upper bound as it implements a tunnel with
no encryption at all.

The last two lines are the crux of our measurements and
show what is the OpenVPN performance without and with
DCO. Wihtout DCO means ”using the tun driver”.

As it is possible to see DCO allows OpenVPN to reach a
throughput that is more than 5 times faster than the traditional
implementation.

Please note that these results were obtained on a modern
and fast machine. Plans are to extend this table with tests
performed on embedded devices running OpenWrt.

Conclusion
This article introduced OpenVPN Data Channel Offload, a
new Linux kernel module aiming at accelerating OpenVPN
tunnels. Although other VPN solutions are already present in
the Linux kernel, OpenVPN is not going to disappear anytime
soon, therefore providing Linux users with a more advanced
and modern implementation of the data plane is still a notable
goal.

Despite ovpn-dco having reached a certain level of matu-
rity as out-of-tree module, all the points touched in this paper
are still open for discussion and (possibly) improvement.


