In-Kernel Fast Path Performance For Containers Running Telecom Workloads

Nishanth Shyamkumar, Piotr Raczynski, Dave Cremins, Michal Kubiak, Ashok Sunder Rajan
Intel Corporation
Oregon, United States; Gdansk, Poland; Shannon, Ireland

Abstract

Virtualization of Telecommunication workloads opens the
door to flexible and resource efficient deployment in a cloud
infrastructure, for Telecom operators. The layers of virtualiza-
tion involved in containers while providing advantages, also
present a bottleneck for network functions requiring high per-
formance. Relying on third party data-path libraries as a solu-
tion result in increased external dependencies, that affect ease
of integration at the orchestration layer, and loss of Linux na-
tive debugging and diagnostic support.

In this paper, we explore and make the case to use an in-kernel
based network pipeline for a 5G User Plane Function, that re-
duces the CPU core count from 10 to 1 for processing 2 Mil-
lion Packets Per Second. This is accomplished by implement-
ing AF_XDP zero copy support in an SR-IOV Virtual Function
driver. We demonstrate performance comparisons with alter-
nate in-kernel data path mechanisms as part of the evaluation.
The proposed solution maintains performance at par with third
party poll mode drivers, but importantly maintains operability
with Linux tools, scalability and allows Kubernetes orchestra-
tion of the User Plane Function running in pods.

Keywords

AF_XDP, Zero copy, SR-IOV, UPF, Containers, In-kernel,
Namespace, Telecom, Throughput, Cloud-native

Introduction

Telecommunication(Telecom) workloads are shifting from
running on Fixed Function appliances, where the proprietary
hardware and software are closely integrated and owned by a
vendor, to appliances based on Network Function Virtualiza-
tion. This allows for utilising commodity hardware to execute
the Telecom workload while reducing cost, improving flexi-
bility and openness.

Containers are at the forefront in achieving these cloud
principles of workload flexibility, quick deployment, scala-
bility, isolation and efficient resource utilization.

The flexibility from network virtualization comes with a
trade-off, as these solutions increase CPU footprint i.e. in-
creasing the number of CPUs required to achieve fast path
performance. In a cloud deployment of UPF, the accept-
able fast path performance of 2 Million Packets Per Sec-
ond(MPPS) throughput is achieved using 10 cores [7]. The

performance is limited because the data plane packet tra-
verses the host namespace Linux network and container
namespace Linux network stack, thus lengthening the Net-
work IO path. The penalty incurred from additional CPU
processing reduces bandwidth and increases latency for the
user application. As a result, cloud-nativity imposes a high
Total Cost Of Ownership(TCO) as more resources need to be
reserved to achieve optimal performance.

In this paper, we combine Hardware Network Virtualiza-
tion technology (SR-IOV) ; and an in-kernel Network bypass
mechanism (AF_XDP) , for a container application to effec-
tively utlilise Network IO at 10x lower TCO. The end result
is that we achieve 2MPPS performance using 1 core, while
also adhering to the cloud principles mentioned above.

The paper is structured into the following sections: 1)
Delve into the network performance bottlenecks when utiliz-
ing containers 2) Description of the SR-IOV Hardware Vir-
tualization technology 3) Explanation of AF_XDP zero-copy
kernel network bypass 4) A brief characterization of the Tele-
com workload 5) Introduce the Test Setup for the experiments
6) Observation of the values measured and we conclude with
a discussion on future work.

Network Performance Bottlenecks

Container sandboxing is managed by the underlying kernel,
which ensures resource limits and isolation. Part of this iso-
lation includes the network namespace, which sandboxes the
containers such that, they are provided their own network
stack and are unaware of any network devices that have not
been assigned to them.

The underlying host system uses the root network names-
pace(also called default namespace), and each container is as-
signed it’s own network namespace [5]. The network names-
pace allows for isolation and scalability, as each container can
be assigned a virtual interface that can be used for communi-
cating with other containers and external hosts. These inter-
faces can be quickly brought up when a container is started
and removed as it is destroyed. To achieve this, the net-
work needs to be virtualized. Network virtualization can be
achieved through software or hardware.

A few examples of the network virtualization implemen-
tations in software are L2 bridge, MACVLAN, IPVLAN or
OpenVSwitch as illustrated in Figure 1. Different Network
plugins in Kubernetes such as Cilium, Weave and Calico,

take a hybrid approach. They use L2 bridges/ L3 Routing
for intra-host communication and overlays such as VXLAN
and IP-over-IP for inter-host communication [10]. These suf-
fer from processing overheads and cannot provide fast path
performance for a Telecom workload.

L2 Bridge

ns2 ‘

nsl
’ veth

| L2 Bridge |
\
Phy if

MACVLAN

Root

nsl ns2

aaaaaaaaaaa

Phy if

Figure 1: Packet flow from physical to virtual interfaces in an
L2 bridge and MACVLAN bridge.

The network virtualization solutions previously mentioned
create CPU overhead, due to Netfilter rule matching, Bridge
lookup table matching and encapsulation/decapsulation op-
erations. The lengthened Network IO stack that the packet
now traverses result in CPU cycles spent in moving packet
data, rather than processing the packet payload. This reduces
bandwidth and increases latency for the user application.

Secondly, once the container virtual interface receives the
packet after the bridging operation, it is transferred to be pro-
cessed by the standard Linux kernel Network Stack.

Enabling in-kernel Fast Path Performance

Leveraging Hardware Network Virtualization technologies
on Network Interface cards(NIC), such as SR-IOV, allows
the negation of the network virtualization logic running in
software.

With hardware 10 virtualization techniques, the container
interface can directly access the NIC resources without a soft-
ware bridge, eliminating CPU cycles which would have oth-
erwise been spent on parsing and routing packets to the ap-
propriate container interface.

SR-IOV

Single Root I/O Virtualization is a network virtualization so-
lution in hardware that is standardized under the PCI-SIG
standard [12].

SR-IOV permits the grouping of a set of network resources
in hardware, i.e hardware queues, interrupts and PCI config-
uration space. This umbrella of resources is called a Virtual
Function(VF), which are then assigned to a container, and ac-
cessed via a dedicated IO driver. Since the VF is a slice of the
network card resource, the number of VF entities determines
an upper bound on scalability.

Network Packets arriving on the NIC port are routed to the
queues associated with a VF, through layers of filtering and

routing present within the NIC hardware pipeline. A few ex-
amples of these on an Intel E§10-XXVDA4 NIC are L2 MAC
filters, 5-tuple filters, Receive Side Scaling and Flow-director.
In our test setup, we use Ethernet Flow Director to steer fast
path packets to the appropriate hardware queue of the VF.

AF_XDP

AF_XDP is a high-performant network data path mechanism,
that is natively supported by the Linux Kernel. It is built on
top of XDP and used to direct packets to a user space appli-
cation [2].

Express Data Path(XDP) is a hook point within the Ker-
nel Network Stack, where an extended Berkley Packet Fil-
ter(eBPF) program logic can be executed on a packet. eBPF
are programs that run in a privileged kernel context within a
sandboxed environment. These programs are verified by the
kernel and allow for flexible and programmable logic to run
in the kernel at specific hook points [3]. Two modes of sup-
port for XDP are Native and SKB mode.

The Native mode requires the hardware network device
driver to be XDP-Aware i.e, implement parts of the XDP
mechanism in concert with the core Kernel. It increases com-
plexity of the driver, but in return provides high throughput
performance capabilities. SKB mode is used for the purpose
of flexibility in order to run on any network device, even if its’
device driver does not support XDP. In this mode, the XDP
mechanism is delegated entirely to the Kernel. However, this
mode is not useful as a high performance alternative to the
traditional network stack.

From the userspace application point of view, a new socket
address family type called AF_XDP is utilized. The socket
descriptor binds itself to a single queue on a hardware device.
The user-space application leveraging AF_XDP, registers a
user space memory region called UMEM, with the Kernel.
The UMEM is further divided into equal sized chunks of ei-
ther 2KB or 4KB, called Frames, which are used to hold data
packets and are the basic unit in an AF_XDP operation. The
UMEM has a single Fill Ring and Completion Ring associ-
ated with it. Each AF_XDP socket that is created gets it’s own
Rx and Tx descriptor rings. Thus, the 4 descriptor rings house
descriptors that can point to frames within the UMEM. They
work together to synchronize and transfer control of UMEM
frames between user space and kernel space [6].

AF _XDP Zero Copy

When implemented natively through the network device
driver, there are two options to send the packet data to the
user-space application.

The first option is to copy the packet byte-by-byte from
kernel space to user space memory. This operation is CPU-
intensive, and degrades the throughput performance.

The second option, is to enable zero copy of packets, where
the network hardware device does a Direct Memory Ac-
cess(DMA) operation of the packet, into and out of system
memory representing the respective frame. This eliminates
the need for the CPU to be involved in moving the packet
into the user space buffer, freeing it to focus on application
logic.

UMEM

2. Program HW RX desc

6.Update Rx Q ‘

3.DMA DRIVER (5:€BPF)

Figure 2: Steps showing the receive side of an application
using AF_XDP Zero-copy mechanism.

In Figure 2, the sequence of steps involved in a zero-copy
operation on the receive side are depicted. Here we explain
the steps involved:

* The user space application opens an AF_XDP socket and
binds it to queue O of the VF interface. The socket is
registered with a UMEM area. The application is ready
to receive packets and writes the address of the available
empty frame, as an offset from the UMEM base, into the
UMEM’s Fill Ring descriptor. At this point, control of the
frame is transferred to the Kernel.

e The Kernel reads the Fill Ring, converts the frame address
into a PCI bus address and fills the HW RX descriptor for
the VF queue 0.

* On packet arrival at queue 0, the NIC uses the information
in the HW Rx descriptor and initiates a DMA operation to
this address.

* The NIC notifies the CPU of packet transfer completion via
an interrupt. The CPU schedules the network driver to run
on the CPU.

* The driver references the packet and executes the XDP pro-
gram on this packet in softirq context. A decision is made
on the packet, if it is to be redirected to the user space ap-
plication.

* If the redirect operation is valid, the driver fills in the offset
address of the frame into the descriptor of the AF_XDP
socket Rx ring. Control of the frame is now handed back
to the user-space application.

* The user-space application reads the frame offset address
from the AF_XDP Rx ring, dereferences the frame and ac-
cesses the packet data.

The two important highlights from an AFXDP_ZC opera-
tion are: The kernel space is in control of programming the
Network hardware. This embraces the isolation provided by
the kernel, improving system security. Secondly, the fast path
application binds to a single queue pair. The other queue pairs
on the VF device can then direct packets to the Linux Kernel
network stack, which is especially useful for handling ICMP
control packets such as ARP.

Telecom workload Characterization

The Network Function that is considered in our experiment
is a User Plane Function(UPF) that runs in the core of the
Telecom Network and provides the gateway to external net-
works such as the Internet. In Figure 3 , we observe that User
Equipment(UE) such as mobile phones are connected to the
cell tower/base station through an access network. The base
station aggregates data from multiple end user devices and
sends it over to the Telecom Core Network through wired in-
frastructure. This aggregated wired link uses GTP tunneling
to communicate with the Mobile Core Control Plane and Data
Plane [1]. The interface on the Serving Gateway(SGW) com-
municating with the base station is the S1u interface. On the
other hand, the interface on the Packet Gateway(PGW) con-
necting to the internet is the SGi interface. In the transition
to 5G architecture, the SGW and PGW have been combined
into 1 entity called the UPF.

Mobile Core

Base Station

Figure 3: Telecom Network for 4G architecture.[9]

The UPF is divided into a Control Plane component(UPF-
C) which takes care of session creation, IP address allocation
etc. and a User Plane component(UPF-U) which manages
the data path. This is part of the Control User Plane Sep-
aration(CUPS) design. The goal of the UPF core is to en-
sure each connection from an end user device to the Core
network(a session flow) is properly managed. The Mobile
Core control components(MME, HSS, PCRF) involves fea-
tures such as mobility management, the authentication of
users, ensuring the users data plan limits etc. The User Plane
data plane(UPF-U) receives flow-based information from the
control plane, and these details are stored as tables in mem-
ory.

The data plane component(UPF-U) for each session can
be split into an Uplink flow(UL) and a Downlink flow(DL).
The UL deals with packets originating at the UE and the DL
covers packets that have the UE as the destination. In the
UPF-U, for a UL flow, packets arrive at the S1U interface,
undergo GTP header decapsulation, and are passed through
multiple stages such as Policy Control and Charging, Appli-
cation Detection and Control, Service Data Flow etc. The
packet payload is matched on the values stored in these tables
and if all matches succeed, the packet is allowed to exit to the
internet through the SGi interface.

With the virtualization of Network Functions and the ad-
vent of 5G use cases, there is a shift in deployment strat-
egy for Telecom functions. The Data plane components are
disaggregated from the Mobile Core and moved closer to
the base stations and customer premises, and is known as

Multi-Edge Access Computing(MEC). This allows for lower
latency times and tighter control of locally generated data.
The primary concerns for such deployments is having high
throughput performance at low operational costs and low
power consumption. Our test case is focused on such a sce-
nario of a UPF VNF deployed at a MEC site servicing a load
of 20Gbps.

Experimental Test Setup

The experimental test setup consists of a host designated as
System Under Test(SUT), that runs the Telecom UPF net-
work function . The Network Function program we use, is
compliant with 3GPP Release 13.6 and maintains Control and
User Plane Separation. For our test, we simulate the con-
trol plane by statically adding flow based information into the
data plane. This is done so that our tests focus primarily on
the data plane performance.

The UPF is deployed in a container using the Docker plat-
form. For the L2 bridge, MACVLAN and IPVLAN groups,
we use Docker’s in built support for creating these networks
and connecting container interfaces onto them. For SR-IOV
use case, the VFs for each network port are created before
deploying the UPF container. The VF interfaces are then
moved into the container namespace using a software tool
called *Pipework’ [8].

In Figure. 4, it can be seen that each UPF application uti-
lizes 2 cores. Core O processes uplink packets received on Rx
at the Slu interface(UL-Rx) and transmits packets out Tx at
the SGi interface(UL-Tx). Symmetrically, Core 1 processes
Rx at the SGi interface(DL-Rx), and transmits it to Tx of S1u
interface(DL-Tx). Therefore, one UPF application processes
both UL and DL flows simultaneously.

UPF Network Function

CPU CPU
COREO CORE 1

UL-RX UL-TX DL-RX DL-TX

s1]
Hardware queues ul |sei SGi stu
R T R | |TX

Figure 4: Flows handled by the cores in a UPF application.

The packets for UL and DL data paths are generated from
a second host, designated as Traffic Generator. It uses a
modified DPDK-Pktgen software which is capable of push-
ing packets at different rates and for multiple flows. In our
test case, we are using 2.4 Million Packets Per Second as the
packet rate with 8000 flows.

The SUT and the Traffic generator are directly connected
with a 10G SFP+-SFP+ cable on each of the Network inter-
face ports. The traffic generator simulates Access Network
packets for the UL flow, while simulating Internet traffic for

the DL flow. The Experimental Test Setup is illustrated in
Figure 5.

UPF Container

Access
Network

UPF-C

s
Inbuiftsimalation Engine
i sge

——

=]

D UPF-U
U'a‘fo“

h — 256hE E810-XXVDA sete
TGENw/DPDKon | — % 3 —§ °— TGENw/DPDKon
\710-DA __u— _] Y710-DAL

)

=

Data

Figure 5: Experimental Test Setup diagram
Further details of the test setup are mentioned below:

Hardware
« SUT
— CPU: Intel Xeon Platinum 8260M CPU @ 2.40GHz
Dual Socket
— Memory: 96GB/socket, DIMM, DDR4, 2933MT/s
— NIC: Intel Ethernet Network Adapter E810-XXVDA4
4x25G
¢ Traffic Generator
— CPU: Intel Xeon Platinum 8260M CPU @ 2.40GHz
Dual Socket
— Memory: 96GB/socket, DIMM, DDR4, 2933MT/s
— NIC: Intel Ethernet Network Adapter X710-DA4 4x10G

Software
The two hosts are designated as SUT and Traffic Generator
* SUT
— OS: Ubuntu 20.04.4 LTS
Kernel: 5.15.0-23-generic
Hugepages: 2MB
Docker version 20.10.14
iavf Out-Of-Tree Driver

¢ Traffic Generator

— OS: Ubuntu 18.04.5 LTS
— Kernel: 5.4.5-050405-generic
— Hugepages: 2MB

The SUT has the following optimizations for performance
improvement: 2MB Hugepages are reserved to reduce Trans-
lation Lookaside Buffer evictions, and the UPF applica-
tion is pinned to it’s own dedicated core. Both core pin-
ning and hugepages respect the Non-Uniform Memory Ac-
cess(NUMA) node alignment of the NIC port, which allow
for faster main memory access times. As mentioned above,
we use an Out-Of-Tree iavf driver with AF_XDP Zero Copy
support built into it.

Empirical Observations

This section covers the throughput performance results that
we achieved using the in-kernel fast path solution covered in
this paper and we compare it to other in-kernel options.

The fields on the X-axis, are represented in a 'NW
Virtualization + NW stack’ format. So, for example,
"MACVLAN+Linux’ implies that the briding of the con-
tainer virtual interface to hardware resources is done by
MACVLAN, and the packet processing is taken care of by
the Linux Network Stack.

The unit of measurement for throughput on the Y-axis is
’Megabits per second per core’ i.e, Mbps/core. The packet
size used is 512 Bytes, the average packet size of a mixed
payload, as seen on a Telecom infrastructure [11]. The exper-
iments were run for 50seconds on each run, with pktgen gen-
erating at 2.4 MPPS. Each experiment was repeated 5 times
and the results averaged out.

UPF Container throughput measurement
12000 1200

10000 1000
8000 800
6000 600
4000 400

2000 200

| | | /| o
. SRIOV+afxdp_z

SRIOV+Linux c
9619.636224

1080.694981

Bridge+Linux macvlan+Linux ipvlan+linux

mMbps/core 814.743552
Baseline % 0

1032.84736 1125.122048
26.76962677 38.0952381

1118.830592
37.32303732

Figure 6: Single core throughput measurements of UPF con-
tainer.

From the results we infer the following, that the ’L2 bridge
+ Linux network stack’ is the least performant as it involves
both Netfilter rule matching and a bridge lookup table. We
make this our baseline and the performance improvements
for other use cases are displayed as a percentage on the right
sided Y-axis in Figure 6.

The "MACVLAN + Linux’ and "IPVLAN + Linux’ show
performance improvements over the L2 bridge implementa-
tion, as Netfilter matching is not required for these solutions,
however a routing table lookup is still needed. Using ’SR-
IOV+Linux’ to move network virtualization into the hard-
ware increases the throughput to 1118 Mbps/core, but is lim-
ited by the Linux network stack, implying that the Linux Net-
work Stack packet processing and data copying are the main
causes of throughput throttling.

The performance of the ’SR-IOV+AF_XDP ZC’ is at close
to 10x of the other scenarios as a result of HW network virtu-
alization and zero-copy mechanism. A single container run-
ning a UPF Network Function will transmit close to 20Gbps
of data on the UL and DL combined, using 2 cores and 2 VFs.
Compared to the baseline case where the same throughput is
achieved using 20 cores, we can see a significant reduction in
Operational Expenditure costs.

We would like to mention a few caveats about our results.
As observed the UPF application utilises 2 cores to move
20Gbps of data, however there is an additional CPU over-
head on non-application cores for softirq processing. When
the network driver polls the AF_XDP rings(FillQ and TxQ)
for new descriptors and doesn’t find any entries, it resched-
ules the NAPI poll. This creates close to 100 percent CPU
utilization for the softirq core. The problem can be alleviated
by using *’XDP_USE_NEED_WAKEUP’ flag when setting up
the AF_XDP program. This flag stops the driver from polling
the queues and instead entrusts the user space to notify the
driver when packets are ready to be consumed by the driver.
This greatly reduces the CPU cycles being spent idly thus re-
ducing the load on non-application cores, but the measured
values in this paper don’t include this use case. Secondly, ac-
ceptable packet loss for Telecom providers varies based on
Service Level Agreements. We measure 1.1MPPS per core
throughput with zero packet loss. For speeds from 1.1MPPS
to 2.4MPPS per core we observe less than 0.1 percent packet
loss. We are currently exploring the reason for this consis-
tently small packet loss, which may be due to the RX hard-
ware descriptors not being replenished quickly enough, or
losses at the Flow-director, Access Control List or possibly
invalid queues.

Conclusion

Containers provide the infrastructure that enable cloud-native
principles of scalability, isolation, flexibility and quick-
deployment. However, for high throughput workloads that
run on Telecom infrastructure, containers cannot achieve this
bandwidth requirement without increasing the Total Cost of
Ownership. Existing In-kernel mechanisms are limited in
performance due to the overhead of the CPU cycles being
spent in moving the packet from the wire into the application,
and vice versa. Third party solutions such as DPDK impose
external library dependencies and loss of Linux Kernel sup-
port which make integration, support and orchestration in a
cloud deployment challenging.

In this paper we propose a solution that involves two prin-
ciple ideas. The first, is utilizing hardware network virtualiza-
tion in the form of SR-IOV to route packets to the container
virtual interface in hardware, which frees CPU cycles, while
maintaining scalability for containers. The second, is to use
an in-kernel supported Network Stack bypass mechanism i.e,
AF_XDP, running in Zero copy mode. The support for Zero
copy comes from the Network driver for the SR-IOV VF. In
AF_XDP, privileged operations such as HW queue program-
ming are separated from user space and handled in kernel
space. The XDP layer allows for additional programmabil-
ity which can be exploited based on application requirements.
The non-fast path packets can be received on other hardware

queues of the VF and processed by the Linux Kernel Network
stack. This is especially useful for ARP resolution and other
control packets that hit the interface as part of the ICMP pro-
tocol. Finally, we can leverage Linux tools and utilities during
development for debugging and diagnostics purposes [4].

From our results, we are able to realize that our approach
provides close to 10x throughput improvement per core com-
pared to existing in-kernel options, and similar performance
to third-party fast path solutions. Thus, we believe the so-
lution can marry fast path performance with ease of system
integration, due to it’s Linux-native support.

Future work lies in integrating this solution into a Kuber-
netes framework using Multus and SR-IOV Container Net-
working Interface Plugins, and testing the scalability con-
straints while ensuring the performance profile remains con-
sistent. The caveats mentioned in the previous section are
also to be investigated and fixed. Other avenues of research
include decomposition of the UPF Virtual Network Function
into Micro-services bringing it closer to Cloud-native deploy-
ment, while reducing existing permissions/privileges needed
for the container application, to enhance security.

References
[1] 3GPP. Ts 29.274 technical specification.

[2] Corbet, J. 2018. Accelerating networking with af xdp.
lwn.net.

[3] ebpf documentation. ebpf.io/what-is-ebpf.

[4] Hgiland-Jgrgensen, T.; Brouer, J. D.; Borkmann, D.;
Fastabend, J.; Herbert, T.; Ahern, D.; and Miller, D. 2018.
The express data path: Fast programmable packet process-
ing in the operating system kernel. CoONEXT ’18 54—66.

[5] Jain, S. M. 2020. Linux Containers and Virtualization.
Apress.

[6] Karlsson, M.; Topel, B.; and Fastabend, J. 2017. Af
packet v4 and packet zerocopy. Netdev conference.

[7] Kumar, D.; Chakrabarti, S.; Rajan, A. S.; and Huang, J.
2020. Scaling telecom core network functions in public
cloud infrastructure. CloudCom.

[8] Petazzoni, J. Pipework software-defined networking for
linux containers. https://github.com/jpetazzo/pipework.

[9] Peterson, L., and Sunay, O. 5G Mobile Networks: A Sys-
tems Approach. CC BY-NC-ND 4.0.

[10] Qi, S.; Kulkarni, S. G.; and Ramakrishnan, K. K. 2020.
Understanding container network interface plugins: De-
sign considerations and performance.

[11] Rajan, A. S.; Gobriel, S.; Maciocco, C.; Ramia, K. B;
Kapur, S.; Singh, A.; Erman, J.; Gopalakrishnan, V.; and
Jana, R. 2015. Understanding the bottlenecks in virtu-
alizing cellular core network functions. The 21st IEEE
International Workshop on Local and Metropolitan Area
Networks.

[12] Shea, R., and Liu, J. 2012. Network interface virtual-
ization: Challenges and solutions. IEEE Network 28-34.

Notices & Disclaimers:
uration and other factors.

©Intel Corporation. Intel, the Intel logo, and other Intel
marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of
others.

Performance varies by use, config-

