
The Anatomy of Networking in High-Frequency Trading

Peter P. Waskiewicz Jr. (PJ)
Jump Trading

Chicago, IL, USA
pwaskiewicz@jumptrading.com

Abstract

Networking has always served a number of very diverse en-
vironments. From Enterprise to the Cloud, Telco and edge,
networking technologies have been able to use a “some sizes
fit most” approach. This is good when it comes to supporting
these technologies in the Linux kernel.
More specialized environments, such as High-Frequency Trad-
ing (HFT), have radically different networking requirements.
Depending on the use case, one requirement might be that
latency is paramount when interfacing with the market ex-
changes. Another use case might be in the HPC environment,
where latency is still paramount, but sustained and reliable
throughput is a must across grid networks.
This talk is intended to highlight where the Linux kernel
networking stack intersects these requirements for HFT, and
where it does not. It will also expand on how latency and jit-
ter within HFT systems compare to “traditional” networking
environments. Ultimately this talk is intended to generate dis-
cussion where HFT networking needs can help improve the
existing intersection points in the kernel, and discuss where
further native integration could be achieved.

Keywords
networking, kernel, xdp, offloads, trading, finance, perfor-
mance

Introduction
Networking technologies have always been the most complex
pieces of a modern computing system. Some technologies
focus on general network connectivity, such as supporting
a mobile device or personal computer, and some technolo-
gies focus on Software-Defined Networks, stitching together
countless virtual machines and containers within data centers.

Modern operating systems, such as Linux, have evolved over
many years to include very robust network stacks to serve
these very diverse needs. Linux has found great success in
adoption and datacenter footprint mainly due to the diversity
and robustness of its network stack. It powers the majority
of the largest Cloud Service Providers in the world, many
Enterprise-level deployments, and is behind the largest
install-base of handheld OS’s in use today, Android.

Even with all of this diversity and flexibility, there are

still environments where the Linux network stack sacrifices
targeted performance for this flexibility. High-Frequency
Trading environments, within the Finanical Tech world, have
some fairly unique requirements for network behavior and
performance.

This paper will focus on how HFT networking require-
ments match up against the diverse network stack capabilities
of Linux. It will dive into:

• How synthentic benchmarking of traditional networks
stack up to real-world benchmarks of traditional networks

• How the synthetic benchmarking resembles the beginning
of HFT networking requirements in practice

• Analyzing what limitations the Linux network stack has
compared to current HFT requirements for predictable la-
tencies, and what might be done about it

• Exploring additional aspects of HFT networking re-
quirements that encompass High-Performance Computing
(HPC) grid environments, and how the Linux network
stack compares to those requirements

”Traditional Networking”, and the Synthetic
Benchmarking Problem

Networking technology is one that fits into every modern
workload in some fashion. In more ”traditional” settings,
such as datacenter-based networks (Enterprise), or disaggre-
gated networks (Cloud), trying to nail down performance can
be a difficult task. Very diverse environments create unpre-
dictable workloads and interrupts that can introduce large
amounts of jitter. When trying to benchmark these workloads,
the benchmarking tests must be fairly synthetic to reduce or
eliminate much of this jitter. But herein lies the issue; the
benchmarks don’t capture what happens in a production set-
ting.

Benchmarking Setup
All benchmarks were captured via netperf [3] using the
TCP RR test. The system-under-test (SUT) is an Intel® Xeon®

ES-2640 with a Broadcom bnx2x 10GbE adapter running stock

The views expressed in this paper are the author’s only, and
should not be attributed to Jump Trading.



Fedora 36. The peer system is an Intel® Xeon® Platinum 8180
with an Intel® 82599ES 10GbE adapter, running Gentoo Linux.
The two systems are connected to a Mellanox SN2100 switch via
Direct-Attach Twinax cables.

Note: this paper does not intend to serve as a reference on
tuning systems for optimal scaling. Much of the techniques dis-
cussed in this paper have been used in many previous publications
and presentations over the years. Two of those publications that this
paper draws techniques from are here [1] and here [2].

Benchmark 1: Real-World Configuration

The simplest benchmark to run is one without any tuning. As one
might expect, the results don’t look terribly great.

Figure 1: Netperf with no optimizations

As seen in Figure 1, one can see that every run produced
drastically different latency figures. The average minimum latency
is 51.6 µsecs, with an average mean latency of 68.7 µsecs. So not
only is the jitter and variability significant, the latency numbers
themselves are very high for an isolated test such as this.

The effects of no CPU affinity, no interrupt affinity, no cache
isolation, all contribute to latency figures being rather poor. But the
biggest issue is those latency figures are completely unpredictable,
causing undeterministic workload behavior.

Benchmark 2: CPU affinity

One method to reduce jitter in a workload, and therefore increase the
predictable performance of that workload, is to pin the workload to
a particular CPU or set of CPUs. This allows data to stay cache-hot,
as well as trying to keep memory buffers allocated from the local
NUMA node.

In Figure 2, all of the tests were run while pinned to CPU 6 on
NUMA node 0. This was chosen since the NIC itself is also in a
PCIe slot that is on the PCIe tree attached to NUMA node 0 on this
specific platform.

Overall jitter has improved slightly, and overall latency has
also improved slightly. The average minimum latency across all
tests is 50.1 µsecs, a 1.5 µsec delta. The average mean latency
is 67.6 µsecs, another 1.1 µsec improvement over the previous
benchmark. While these aren’t significant improvements, they are
still improvements that can have significant impact in the world of
High-Frequency Trading. More on that later.

Figure 2: Netperf with CPU pinned

Benchmark 3: CPU affinity, Interrupt affinity
Taking the tuning tuning and benchmarking to the next level, the
interrupt assigned to the corresponding NIC queue or queue pair can
be pinned to a CPU. In the hope of being obvious, the CPU chosen
should be the same one running the workload. In the example so
far, that would be CPU 6. This also requires the irqbalance
daemon to be stopped or killed, or use irqbalance policy scripts [4] to
manually assign device interrupt affinity within the default balancing
scheme.

Figure 3: Netperf with CPU pinned, Interrupt pinned

Figure 3 illustrates even better latency and jitter improvements.
With an average minimum latency of 45.4 µsecs and average mean
latency of 53.1 µsecs, these are improvements of 6.2 µsecs and 15.6
µsecs, respectively.

As we’re observing better predictable latency, we are also ap-
proaching configurations that are very artificial. Most workloads
can’t operate with this level of CPU and interrupt pinning, since
other workloads typically run on the same platforms, and would be
negatively impacted by these very specific tunings.

Benchmark 4: CPU affinity, Interrupt affinity, CPU
isolation
One last OS-level optimization that can be done is isolation of the
CPU or CPU’s themselves. Isolating a CPU removes it from the OS
scheduler’s view, and keeps it parked at idle until a task is explicitly
scheduled to run on that CPU. This can be done via the taskset
command, or the CPU affinity parameter of netperf.



This isolation can be done by using the isolcpus kernel
boot parameter, or it can be done via other runtime mechanisms.
For this test, the isolcpus was used to completely isolate CPU
6, the same CPU that netperf has been pinned to in the previous
two benchmarks.

Figure 4: Netperf with CPU pinned, Interrupt pinned, CPU
isolated

In Figure 4, the data here has been normalized. The maximum
latencies in this dataset were drastically variable, making the min
and average latencies difficult to analyze. In this dataset, the
average minimum and average mean latencies are 47.8 µsecs and
60.9 µsecs. This is only a 3.8 µsecs and 7.8 µsecs improvement
from the baseline, which is worse than without isolating the CPU.

A few factors come into play to explain this drop in pre-
dictable latency when the CPU is isolated. The biggest factor is
the receive/Rx side of processing is done via NAPI in SOFTIRQ
context. These context switches are always expensive. When
they happen without the process scheduler involved, e.g. the CPU
has been isolated, then more efficient overall use of the CPU is
compromised. If improvement is desired, then one needs to look at
tunables and changes outside of the kernel itself today.

Benchmark 5: CPU affinity, Interrupt affinity, CPU
isolation, and Polling
When OS-level optimizations aren’t sufficient to get complete pre-
dictable latencies, one must turn to application modifications. In this
benchmark, some local changes were made to netperf to use lo-
cal patches that polled for incoming Rx traffic. This also required
changes to the bnx2x driver to not use interrupts, especially NAPI,
to process incoming Rx traffic. The overall effect is the application,
running on an isolated CPU core, never context switches to push or
pull data from the NIC.

In Figure 5, our predictable latencies have tightened up very
nicely, plus our overall latencies have dropped from our baseline.
With an average min latency of 41.9 µsecs and average mean latency
of 56.3 µsecs, these targets are 9.3 µsecs and 12.4 µsecs better than
the baseline. With this specific platform, hardware, and switch, this
is approaching the best case this setup is capable of.

These numbers, along with the remaining jitter, are very syn-
thetic benchmarks that are not practical for traditional application
and network workloads. However, the modifications, both OS and
application, are typical examples for how High-Frequency Trading
network environments operate in reality. And this is where the
anatomy of these HFT-based networks begin to exist.

Figure 5: Netperf with CPU pinned, CPU isolated, Applica-
tion polling

HFT Networking Basics: The Trading Puzzle
High-Frequency Trading firms and other related Financial Tech-
nology firms have notoriously been very secretive regarding their
technologies. This includes usage of open-source software, or
custom-built software frameworks where current OSS solutions
fall short. This approach creates maintenance burdens, but also
doesn’t give back to OSS solutions where it can make sense to do so.

While custom solutions can close performance gaps and pro-
vide predictable latencies, these solutions still need to exist in
a world where the financial exchanges use standard networking
protocols. Exchanges such as the Chicago Mercantile Exchange
(CME), NYSE, Eurex, and many others, all have their own protocols
and data structure formats. But ultimately, they all communicate
using standard Ethernet and other standard upper-layer protocols.
They also have been mainly standardized on 10GbE networking.
Because of this speed and feed standard, HFT networking typically
doesn’t care about the actual size of the bandwidth pipe available.
The predictable latency and ability to eliminate jitter is paramount
to the HFT networking model.

Trading Strategies vs. Latency
Within the financial world, trading strategies have always been
present. The famous adage of ”buy low, sell high” is one of the
most obvious, and sound strategies. But how does one know when
”low” is low, and ”high” is high?

Trading strategies are the heart and soul of any financial model.
Whether it’s through broker accounts with individual-level trading,
or HFT-based trading, the fact is the strategies are all data-driven.
For HFT strategies, these can vary wildly what the strategy
triggers on. Is it some market event, news headline, or some other
mathematical and statistical pattern? Whatever the approach, data
is crunched, and a trading decision is made. When this decision
is executed, the trading decision itself must be executed with the
financial exchange as soon as possible. The longer it takes for
that decision to be acted upon decreases the likelihood that the
circumstances leading to the decision will still be in play within
the exchange. In other words: someone else will also figure out
the same decision, and will try and execute their trade before you.
If we scale this single event up to thousands of trades, or even
hundreds of thousands, this latency between decision and execution
is incredibly important. Taking it another step, the predictable
latency is absolutely paramount.



Trading strategies assume that once a decision is made, it
will be immediately executed. This translates to the elimination
of as much latency in the network path as possible. From a Linux
perspective, that does mean kernel bypass. Having software push
data directly to hardware, and then hardware dumping data directly
to userspace applications, is the most effective way to eliminate
latency. But this also requires an environment that eliminates as
much jitter as possible. Referring back to Figure 5, this synthetic
environment with CPU isolation, CPU affinity, and application-
awareness to poll for data, is exactly how the HFT environment
needs to operate to achieve predictable latency.

Proposal: AF XDP to the Rescue?
Kernel bypass has been frowned upon by kernel developers since
the beginning of time. Why bypass a network stack that is hardened
and validated in installations across the globe? But the realities
of HFT networking and predictable latency drives that decision to
bypass the networking stack.

AF XDP [7] may be a solution to converge usage of the Linux
network stack, and also provide the bypass semantics needed by
HFT for predictable latency. If a device driver can be fully converted
to a polling driver, meaning NAPI and SOFTIRQ are removed from
the equation, then the context switching and interrupt-related jitter
can be eliminated.

If such a polling driver existed, and a proper XDP program
was loaded with an AF XDP-attached socket, then hotpath data
coming in from an exchange could easily be pushed to applications
polling on incoming data. The huge advantage here though, is any
traffic that is not critical to the hotpath and exchange traffic could
be routed to the kernel, since it wouldn’t trigger a hit in the AF XDP
application. Traffic such as LLDP or other control traffic would
not need to be handled in custom ways, and could let the kernel
itself handle it. This opens up many possibilities that can eliminate
custom solutions, and gain benefits from using the native Linux
network stack.

Why hasn’t this transition been done yet? The main issue at
the time of this writing is AF XDP still has limitations with elimi-
nating context switching on the Tx/transmit side. It still requires a
sendmsg() in the simplest situations, which the system call itself
would introduce latency and jitter through the context switch. This
is still an area the kernel can improve and close this gap, providing
kernel bypass with kernel stack integration.

HFT and HPC: Scaling Different Networks
High-Frequency Trading is driven by the quantitative research side
that crunches massive amounts of data to derive trading strategies.
In order to do this, a completely separate computing environment is
typically required. These large High-Performance Computing, or
HPC, environments, are typically a Grid network.

Grid networks typically operate on large datasets, potentially
in the petabytes-range. While this amount of data could require
very large data pipes, the effectiveness of the Grid network relies
solely on the latency between nodes. If an application stalls waiting
for results or extra data to crunch on, that damages the viability of
the strategy. And if the network interconnect is to blame, then that
latency is something that needs to be eliminated.

HPC and RDMA
RDMA, or Remote DMA, is a protocol and technique to try and
eliminate latency on a network interconnect. RDMA networks

also typically use Infiniband as their link-layer protocol, instead
of Ethernet. This means these networks have dedicated switches
and Infiniband adapters, and require different management, driver
stacks, and software stacks, to run the RDMA and Message Passing
Interface (MPI) data streams.

RDMA is a very popular choice in HPC and Grid networks,
given its low and very predictable latencies. However, as Ethernet-
based RDMA technologies continue to evolve and improve, such
as RDMA over Converged Ethernet (RoCE), moving to these more
standard link-layer networks is becoming more attractive.

HPC Without RDMA?
New techniques for passing data through the kernel, such as
io uring [6], are showing serious promise. io uring started as
a replacement for libaio, but has grown well beyond that initial
focus area. The move towards using it for network traffic may
upend the traditional BSD socket API. This could be a very strong
potential for HPC networks to use instead of RDMA.

Another promising protocol is Homa [5]. It is meant to re-
place other datacenter protocols, and promising very low latency.
An interesting approach though is that Homa can be used outside
the kernel with kernel bypass, or as a protocol within the kernel
stack. This is still fairly early in development, but shows great
potential to be a candidate for HPC and HFT networks alike.

Conclusion
High-Frequency Trading has very demanding and unique require-
ments for networking. On the trading side, predictable latency is
key for the success of trading algorithms and strategies. Without the
predictable latency, these strategies will fail, negatively impacting
both the Trading Firm, but also the markets themselves. But the
custom nature of many things in the HFT space has become more
complex to maintain, and any opportunity that the kernel can
provide to ease that custom maintenance burden is very welcome.
”Kernel-bypass-with-the-kernel” with AF XDP is a very promising
operating model. Eliminating the context switches, and then pro-
viding kernel-managed polling models, will further narrow the gaps.

In the HPC space, RDMA-based technologies can continue
converging to more common protocol and hardware technologies.
Promising technologies such as io uring [6], and new protocols
such as Homa [5], continue to narrow the gap between highly
customized networks, and something that the kernel can provide out
of the box.

As these technologies continue to move forward, the HFT
community needs to continue engaging with the Linux kernel
community to help guide this path to predictable latency on any
workload.

Acknowledgments
I would like to acknowledge the NetDev 0x16 program committee
for the opportunity to submit and invitation to present this paper.

References
[1] Luca Deri, Joseph Gasparakis, PJ Waskiewicz, Francesco Fusco

2010. Wire-Speed Hardware-Assisted Traffic Filtering with
Mainstream Network Adapters NEMA, Proceedings from First
International Workshop on Network Embedded Management and
Applications



[2] Luca Deri, Francesco Fusco 2010. High Speed Net-
work Traffic Analysis with Commodity Multi-core Systems
https://luca.ntop.org/imc2010.pdf

[3] Rick Jones, et al 2008. Netperf main github site
https://github.com/HewlettPackard

[4] Neil Horman, PJ Waskiewicz, et al 2012. irqbalance main
github site https://github.com/Irqbalance/irqbalance

[5] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, John
Ousterhout 2018. Homa: A Receiver-Driven Low-Latency Trans-
port Protocol Using Network Priorities SIGCOMM, Proceedings
of the 2018 Conference of the ACM Special Interest Group on
Data Communication Budapest, Hungary

[6] Jens Axboe 2019. Efficient IO with io ring
https://kernel.dk/io uring.pdf

[7] Jonathan Corbet, Björn Töpel 2018. Accelerating networking
with AF XDP https://lwn.net/Articles/750845/

Author Biography
Peter Waskiewicz Jr (PJ) is a Senior Software Engineer in Jump
Trading’s core engineering division, focusing on Linux kernel and
device driver development, along with other system-level engineer-
ing. Prior to Jump Trading, PJ spent the majority of his career at
Intel, where he was responsible for writing and maintaining several
of the Intel Ethernet Linux device drivers, and developing Linux ker-
nel changes for scaling to 10GbE and beyond. PJ was also a Senior
Principal Engineer at NetApp in the SolidFire division, where he
was the chief Linux kernel and networking architect for the Solid-
Fire scale-out cloud storage platform. He is also an adjunct faculty
at Portland State University, teaching OS and Device Drivers in the
Electrical and Computer Engineering Department.


