
Outreachy – Linux Networking
Netdev 0x16, 2022

Roopa Prabhu (Nvidia), Stefano Brivio (Red Hat), Jaehee Park

Agenda

● Goals
● Outreachy intro – Roopa Prabhu
● Networking projects @ Outreachy – Roopa Prabhu
● Further project ideas and half-done things – Stefano Brivio
● Hear from our Intern – Jaehee Park
● Resources

Goal for this talk

● Outreach
● Increase networking participation in Outreachy

○ Kernel, userspace, anything networking …
● Call for more mentors, interns
● Call for more projects
● Call for more sponsors

Outreachy Intro

● Outreachy’s goal is to increase diversity in Open Source
● Outreachy https://www.outreachy.org/ provides paid remote internships in open source

and open science
○ to people subject to systemic bias and impacted by underrepresentation in the tech

industry
● Two rounds per year

○ December and May
○ 3 months full time internships

● Many open source communities to pick from - Linux kernel is one of them!
○ Linux kernel outreachy coordinator is Alison Schofield
○ https://www.outreachy.org/apply/project-selection/

● Sponsors sponsor outreachy communities
● Mentors can submit projects to outreachy communities

https://www.outreachy.org/
https://www.outreachy.org/apply/project-selection/

Outreachy Kernel Networking so far

2020

● Interns: Briana Oursler, Lourdes Pedrajas
● Mentors: Stefano Brivio, Davide Caratti
● Projects:

● deduplication in networking selftests script: turned into half-baked library draft
● new tc selftests and improving the existing ones

2022

● Interns: Jaehee Park, Sevinj Aghayeva, Alaa Mohamed
● Mentors: Roopa Prabhu, Stefano Brivio, Andy Roulin
● Projects:

● Linux kernel neighbour subsystem fix
● Linux bridge driver fixes
● netlink extack fixes
● Linux kernel selftests and fixes
● Linux kernel selftest library

Half-done things

● Three months are not that long
● Not completed yet (Jaehee will show some bits)

○ Library for selftests
■ …it’s complicated.

○ Tool to embed kselftests in initramfs, ~10 seconds build-to-run in VM
■ more than half-done (Sevinj did a lot), usable for many areas
■ https://mbuto.sh

○ AVX2-based clearing of pages (first XDP, then slab, then the world!)
■ Based on some old ideas by Stefano and Jesper Brouer
■ Jaehee started checking out things just before end of internship

https://mbuto.sh

Next Outreachy round?

● Plan to finish the kselftests library in the next round (“May” 2023)
● And perhaps something else. New ideas and mentors welcome!

○ …don’t let Stefano just POSIXify interns.
● Deadlines (approximate):

○ submission of new projects in late March 2023
○ mentor sign-up around that date
○ contribution phase starts after that

■ …yes, that’s when you see people fixing whitespace in decnet and pcmcia
■ we’re trying to improve that

Hear from Outreachy intern - Jaehee Park!

Brief intro

● Software engineer interested in embedded applications, the Linux kernel,
networking, debugging, testing, and more!

● Outreachy ‘22 intern

● Documented Outreachy experience in blog
○ https://jhpark1013.github.io/blog/

https://jhpark1013.github.io/blog/

Outreachy Linux kernel internship

1. Projects

2. Tooling

3. Networking tests

Project 1: New subnet filtering feature added to ARP
and ndisc in the kernel networking stack

Project 2: exploring XDP with task example (zero network buffer pages using
AVX2 instructions and re-evaluate performance)

perf: debugging tool

mbuto: builds minimal image for kernel selftests

selftests

Linux kernel testing library
for networking
(Trying to factor common tasks from
kernel networking selftests into a
library)

Mentored by Roopa Prabhu,
Stefano Brivio, and Andy Roulin

Sevinj Aghayeva
Outreachy ‘22 intern
contributed to kselftest feature

Alaa Soliman Mohamed Outreachy ‘22
intern contributed as well as previous
outreachy interns Stefano mentored

Project 1: Linux kernel patches
New feature in neighbor discovery

● Patches were sent to the
net-next tree

● Goal was to provide a subnet
filtering option for garp during
neighbor discovery

version protocol response sysctl

IPv4 ARP
(address
resolution
protocol)

garp
(gratuitous ARP)

arp_accept

IPv6 ndisc / NDP
(neighbor
discovery)

unsolicited NA
(neighbor
advertisement)

drop_unsolicited_na
&
accept_untracked_na

IPv4 vs IPv6 analogies

Basic networking concepts

Arp communication

Garp (gratuitous arp)

● A device announces itself without being prompted by an ARP request
● It’s also called unsolicited advertisements in IPv6
● By default, devices are configured to drop all gratuitous ARP (garp) frames. But you can enable the

device to accept garp with the arp_accept sysctl

https://elixir.bootlin.com/linux/latest/source/Documentation/networking/ip-sysctl.rst#L1630

Subnet filtering in ARP: new knob in arp_accept

● The subnet filtering option has been added
as the 3rd “knob” to the arp_accept sysctl

● Instead of calling IN_DEV_ARP_ACCEPT
directly, define the arp_accept() function to
include more than just 2 features

● The arp_accept() function includes switch
statement to output 0 or 1 based on the
conditions

static int arp_accept(struct in_device *in_dev, __be32 sip)

{

 struct net *net = dev_net(in_dev->dev);

 int scope = RT_SCOPE_LINK;

 switch (IN_DEV_ARP_ACCEPT(in_dev)) {

 case 0: /* Don't create new entries from garp */

 return 0;

 case 1: /* Create new entries from garp */

 return 1;

 case 2: /* Create a neighbor in the arp table only if sip

 * is in the same subnet as an address configured

 * on the interface that received the garp message

 */

 return !!inet_confirm_addr(net, in_dev, sip, 0, scope);

 default:

 return 0;

 }

}

Subnet filtering in ndisc: new knob in accept_untracked_na
● RFC 9131 adds a behavior to accept unsolicited NA
● Subnet filtering added as the 3rd knob to this new accept_untracked_na sysctl

…
…

pseudocode:

…

Subnet filtering in ndisc: new knob in accept_untracked_na

static int accept_untracked_na(struct net_device *dev, struct in6_addr *saddr)

{

 struct inet6_dev *idev = __in6_dev_get(dev);

 switch (idev->cnf.accept_untracked_na) {

 case 0: /* Don't accept untracked na (absent in neighbor cache) */

 return 0;

 case 1: /* Create new entries from na if currently untracked */

 return 1;

 case 2: /* Create new entries from untracked na only if saddr is in the

 * same subnet as an address configured on the interface that

 * received the na

 */

 return !!ipv6_chk_prefix(saddr, dev);

 default:

 return 0;

 }

}

Project 2 - Exploring XDP with a task example: zero network buffer pages using
AVX2 instructions

● Benchmarking code execution time inside
the kernel

● Testing clearing pages with various SIMD
operations (like MMX and AVX2)

● Using prototype-kernel by Jesper Brouer as
testbed for experiments

○ netoptimizer / prototype-kernel

● Goal was to experiment with tests in
prototype-kernel

static int time_memset_avx2_256(struct time_bench_record *rec, void *data)

{

#define CONST_CLEAR_SIZE 256

 int i, j;

 uint64_t loops_cnt = 0;

 time_bench_start(rec);

 for (i = 0; i < rec->loops; i++) {

 kernel_fpu_begin();

 TIME_MEMSET_AVX2_ZERO(0);

 loops_cnt++;

 barrier();

 for (j = 0; j < BYTES_TO_YMM(CONST_CLEAR_SIZE); j++)

 TIME_MEMSET_AVX2_STORE(global_buf[YMM_BYTES * j], 0);

 barrier();

 kernel_fpu_end();

 }

 time_bench_stop(rec, loops_cnt);

 return loops_cnt;

#undef CONST_CLEAR_SIZE

}

https://github.com/netoptimizer
https://github.com/netoptimizer/prototype-kernel

AVX2 can clear pages on XDP paths faster!

AMD EPYC
7351 (Napes
Zen) 16-core
(Stefano's)

E-1650 v4 @
3.6GHz
(Jesper's)

i7-8750H @
0.9GHz
(Jaehee's)

memset_AVX2 20.049 3.954 1.983
memset_MMX_256 34.251 10.544 7.945
memset_MOVQ_256 26.731 8.435 7.956
alternative_MOVQ_256 26.73 8.433 8.164
memset_256 43.437 12.126 9.001
memset_variable_step 45.107 9.489 9.689

Measurements in nanoseconds

Project 2 - Exploring XDP with a task example: zero network buffer pages using
AVX2 instructions

Outreachy Linux kernel internship

1. Projects

2. Tooling

3. Networking tests

New subnet filtering feature added to arp
and ndisc in the kernel networking stack

Exploring XDP with task example

perf: debugging tool
mbuto: builds minimal image for kernel selftests

selftests

Linux kernel testing library for networking

Mentored by Roopa Prabhu,
Stefano Brivio, and Andy Roulin

Debugging with perf

● Setup perf to work with the newest kernel to
test my new patch

● I found an error in my selftest with perf!

● My neighbor cache table wasn’t being
updated (but on perf I saw neigh_update
being called). So I knew there was a bug in
my selftest

see the neigh_update being called
(and other calls in the network stack):

Trying out mbuto: building quick initramfs for VM images
(now with kselftests inside!)

● Originally, quick hack Stefano wrote to create
small initramfs images for qemu

● Kselftests support added by Sevinj Aghayeva
(Outreachy ‘22 intern)

● Runs from kernel source directory, builds a
minimalistic VM image, & sources selftests and
required host tools

● Significantly streamlines the testing workflow!

● Check out the demo here! https://mbuto.sh

...

kvm -kernel arch/x86/boot/bzImage

-initrd $(../mbuto/mbuto -p kselftests -C timens)

Focus on testing
just the relevant set
of tests that I’m
interested in using
the -C flag

(here, we’re just
testing timens)

https://mbuto.sh

Outreachy Linux kernel internship

1. Projects

2. Tooling

3. Networking tests

New subnet filtering feature added to arp
and ndisc in the kernel networking stack

Exploring XDP with task example

perf: debugging tool
mbuto: builds minimal image for kernel selftests

selftests

Linux kernel testing library for networking

Mentored by Roopa Prabhu,
Stefano Brivio, and Andy Roulin

Setup function (w/o using library)

After setup, I use this “arping” command:

ip netns exec ${HOST_NS} arping -A -U ${HOST_ADDR}

router_intf

router_ns host_ns

host_intf

veth pair
192.0.2.1 192.0.2.2

setup() {

 local arp_accept=$1

 # Set up two namespaces

 ip netns add ${ROUTER_NS}

 ip netns add ${HOST_NS}

 # Set up interfaces veth0 and veth1, which are pairs in separate

 # namespaces. veth0 is veth-router, veth1 is veth-host.

 # first, set up the inteface's link to the namespace

 # then, set the interface "up"

 ip netns exec ${ROUTER_NS} ip link add name ${ROUTER_INTF} \

 type veth peer name ${HOST_INTF}

 ip netns exec ${ROUTER_NS} ip link set dev ${ROUTER_INTF} up

 ip netns exec ${ROUTER_NS} ip link set dev ${HOST_INTF} netns ${HOST_NS}

 ip netns exec ${HOST_NS} ip link set dev ${HOST_INTF} up

 ip netns exec ${ROUTER_NS} ip addr add ${ROUTER_ADDR}/${SUBNET_WIDTH} \

 dev ${ROUTER_INTF}

 ip netns exec ${HOST_NS} ip addr add ${HOST_ADDR}/${SUBNET_WIDTH} \

 dev ${HOST_INTF}

 ip netns exec ${HOST_NS} ip route add default via ${HOST_ADDR} \

 dev ${HOST_INTF}

 ip netns exec ${ROUTER_NS} ip route add default via ${ROUTER_ADDR} \

 dev ${ROUTER_INTF}

 ROUTER_CONF=net.ipv4.conf.${ROUTER_INTF}

 ip netns exec ${ROUTER_NS} sysctl -w \

 ${ROUTER_CONF}.arp_accept=${arp_accept} >/dev/null 2>&1

}

#!/bin/sh

Kselftest framework requirement - SKIP code is 4.

KSELFTEST_SKIP=4

. ./lib/util.sh

lib ns_vif routing link || return $KSELFTEST_SKIP

lib mtu tunnels || return $KSELFTEST_SKIP

cleanup() {

 ip netns del A

 ip netns del B

}

setup_arp_test() {

 ns A B || return $KSELFTEST_SKIP

 veth A B || return $KSELFTEST_SKIP

}

arp_test_gratuitous() {

 local arp_accept=$1

 setup_arp_test

 ip netns exec B arping -A -U addr_get veth_B 4

}

cleanup

arp_test_gratuitous

Selftest using the library

Setup namespaces A and B

Interfaces veth_A and veth_B are pairs in
namespaces A and B

Use addr_get() to get the IP address given the
device interface.

veth_A

A B

veth_B
veth pair

192.0.2.1 192.0.2.2

Selftest w/o using library vs Selftest using library

Much cleaner and shorter!

Using the library extracts
the common code from
tests

We eliminate repetitive
code in net-next tests
when setting up network
topologies using the library

ROUTER_NS="ns-router"

ROUTER_NS_V6="ns-router-v6"

ROUTER_INTF="veth-router"

ROUTER_ADDR="10.0.10.1"

ROUTER_ADDR_V6="2001:db8:abcd:0012::1"

HOST_NS="ns-host"

HOST_NS_V6="ns-host-v6"

HOST_INTF="veth-host"

HOST_ADDR="10.0.10.2"

HOST_ADDR_V6="2001:db8:abcd:0012::2"

SUBNET_WIDTH=24

PREFIX_WIDTH_V6=64

cleanup() {

 ip netns del ${HOST_NS}

 ip netns del ${ROUTER_NS}

}

cleanup_v6() {

 ip netns del ${HOST_NS_V6}

 ip netns del ${ROUTER_NS_V6}

}

setup() {

 local arp_accept=$1

 # Set up two namespaces

 ip netns add ${ROUTER_NS}

 ip netns add ${HOST_NS}

 # Set up interfaces veth0 and veth1, which are pairs in separate

 # namespaces. veth0 is veth-router, veth1 is veth-host.

 # first, set up the inteface's link to the namespace

 # then, set the interface "up"

 ip netns exec ${ROUTER_NS} ip link add name ${ROUTER_INTF} \

 type veth peer name ${HOST_INTF}

 ip netns exec ${ROUTER_NS} ip link set dev ${ROUTER_INTF} up

 ip netns exec ${ROUTER_NS} ip link set dev ${HOST_INTF} netns ${HOST_NS}

 ip netns exec ${HOST_NS} ip link set dev ${HOST_INTF} up

 ip netns exec ${ROUTER_NS} ip addr add ${ROUTER_ADDR}/${SUBNET_WIDTH} \

 dev ${ROUTER_INTF}

 ip netns exec ${HOST_NS} ip addr add ${HOST_ADDR}/${SUBNET_WIDTH} \

 dev ${HOST_INTF}

 ip netns exec ${HOST_NS} ip route add default via ${HOST_ADDR} \

 dev ${HOST_INTF}

 ip netns exec ${ROUTER_NS} ip route add default via ${ROUTER_ADDR} \

 dev ${ROUTER_INTF}

 ROUTER_CONF=net.ipv4.conf.${ROUTER_INTF}

 ip netns exec ${ROUTER_NS} sysctl -w \

 ${ROUTER_CONF}.arp_accept=${arp_accept} >/dev/null 2>&1

}

#!/bin/sh

Kselftest framework requirement - SKIP code is 4.

KSELFTEST_SKIP=4

. ./lib/util.sh

lib ns_vif routing link || return $KSELFTEST_SKIP

lib mtu tunnels || return $KSELFTEST_SKIP

cleanup() {

 ip netns del A

 ip netns del B

}

setup_arp_test() {

 ns A B || return $KSELFTEST_SKIP

 veth A B || return $KSELFTEST_SKIP

}

arp_test_gratuitous() {

 local arp_accept=$1

 setup_arp_test

 ip netns exec B arping -A -U addr_get veth_B 4

}

cleanup

arp_test_gratuitous

Summary

● Learned a ton!
● Mentors helped discuss various ideas and improve on 2-3 iterations of the

patchsets
● Working with mentors gave me confidence in interacting with the Linux kernel

community
● Connections made in the open-source community and with the mentors is

incredibly valuable!

Resources

● https://www.outreachy.org/
● https://www.outreachy.org/apply/project-selection/
● https://www.outreachy.org/sponsor/

https://www.outreachy.org/
https://www.outreachy.org/apply/project-selection/

