Bring network and time together using Linux tracing

Alexander Aring
RedHat, Inc.
Ottawa, Canada
aahringo @redhat.com

Abstract

This paper is about visualizing a distributed network proto-
col by using the trace-cmd [12] time synchronized trace events
feature. As example, we use the Linux Distributed Lock Man-
ager [13] (DLM) protocol to visualize lock states over time in
the Jumpshot [7] viewer.

Trace-cmd is the user space tracing utility to control the Linux
in-kernel tracing subsystem. Recently a new feature was intro-
duced to record multiple Linux machines tracing events with
their timestamps synchronized across those machines.

The Linux Distributed Lock Manager (DLM) subsystem is a
distributed network protocol used by Linux clusters to control
mutual access to shared resources. Current DLM debugging
methods are limited by dumping lock states via command line
interfaces e.g. debugfs. Those dumps can only be taken se-
quentially and without being time synchronized. Means it will
not represent all lock states at one time. Additionally, those
cli dumps need to be merged on your own to see a connection
between them.

The slog2sdk [6] containing the viewer Jumpshot will be used
to represent the DLM protocol lock states over time by using a
GANTT chart [14]. Therefore, a trace converter dim2slog2 [1]
was developed to build a bridge between those components of
trace-cmd/Linux tracing subsystem and slog2sdk.

In this paper I will show what the steps are to record a time
synchronized DLM trace by using trace-cmd and how those
are converted to visualize them in Jumpshot. This approach
can be adapted to other distributed network protocols as well
and is not limited for debugging use cases. Moreover, we will
look into possible new ideas on how to use time synchronized
tracing events in a distributed network.

Keywords
Distributed Lock Manager (DLM), slog2, Jumpshot, trace-
cmd, Linux Tracing, Message Passing Interface (MPI), Pre-
cision Time Protocol (PTP), Kernel-based Virtual Machine
(KVM), Time Synchronization, Global Clock, Distributed
Network, Cluster, dlm2slog2

Introduction

This section will show the short introduction into the relevant
topics to give a basic knowledge about them.

Cluster

A machine used in a cluster is named a node. Multiple nodes
can form a cluster. Those nodes can communicate to each
other and having an addressing scheme of a node ID. A node
ID is number representation of a machine inside a cluster. Be-
sides nodes a cluster contains shared resources which can be
accessed by those nodes. A shared block device is an example
for a shared resource and can be used among the cluster nodes
by an e.g. a cluster file system such as GFS2 [9] or OCFS2
[10]. To form a cluster you usually need a cluster manager
running on all cluster nodes. An example for a Linux cluster
manager is corosync [8].

Distributed Lock Manager

A Distributed Lock Manager can be used in a cluster to con-
trol mutual access of shared resources among cluster nodes.
There are several different DLM implementation out there.
One historical implementation is the OpenVMS DLM imple-
mentation which isn’t in any way Open as Open Source. In
this paper we only look at the Linux DLM implementation
that can be found in fs/dIm of the Linux kernel source code.

Lockspace A lockspace contains a set of locks. The user
can create one or several DLM lockspaces per cluster. A
DLM lockspace itself is a cluster resource and cluster nodes
can join a DLM lockspace. A lockspace is referenced by it’s
lockspace name or global ID.

Locks A lock is represented as a lock block (Ikb) inside
Linux DLM subsystem. Such a lkb is a local representation
only but points to a resource block (rsb) which is a lockspace
wide representation. In this paper we only handle rsbs as
lockspace wide lock representation.

Resource Name A rsb contains a unique lockspace wide
resource name (resname) identifier. By using the resname a
node can request lock operations to a specific instance.

Modes DLM supports different Lock modes. The simplest
lock modes are an exclusive and null. There exists more lock
modes, but this is out of scope of this paper. Depending on the
mutual access use-case the shared resource can be protected
in a different lock mode. There exists a compatibility ma-
trix to see which mode is compatible or incompatible to each

other. Lock modes incompatible to each other can’t be used
twice at the same time for the same lock inside a lockspace.

Master DLM works with lock masters. Each rsb points to a
lock master node and can be any node in the lockspace. The
lock master maintains the lock and accept requests for lock
operations. If the lock master itself performs a lock request
to the lock it’s master to it there this will be considered as
local request.

Linux Tracing

In this paper we only handles the upstream Linux tracing
functionality. This contains the Kernel Tracing subsystem
and their user space provided software.

trace-cmd The utility tool trace-cmd uses libtracefs and
libtraceevent to provide a simple interface to interact with the
Linux tracing subsystem. Such as record traces, parse and
print them on the command line.

Time synchronization A recently introduced feature in
trace-cmd is to record traces among several machines and
store their per CPU clock offset as metadata in their recorded
trace files. In this paper we will use this feature to graphical
displaying the lock modes over time.

Libraries All libraries provided by the Linux Tracing sub-
system for user land are written in C. The Linux tracing sub-
system currently provides the following libraries which are
used for this paper work:

libtracefs To control the Linux tracing in-kernel subsystem
there exists a UAPI offered by file system APL

libtraceevent Higher abstraction of representing a recorded
trace events in C.

libtracecmd A static library inside trace-cmd. Can do all
trace-cmd functionality inclusive parse recorded file traces
by trace-cmd.

Important in this paper is libtracecmd which depends on
libtracefs and libtraceevent.

Trace Event A trace event has a system such dlm to repre-
sent the dlm subsystem trace events as group and a name for
example the function which was be traced. Trace Events also
has fields which are either common fields like the timestamp
as the event was recorded or the recorded PID or user specific
fields which can be provided by parameters.

Kernel-based Virtual Machine

In this paper we will use only a virtual Linux cluster. This
means our cluster machines are guest machines only. Those
machines using the KVM subsystem with interacting with the
host machine.

CPU clock offset Trace-cmd can do a read KVM debugfs
entries to determine virtual CPU clock offsets with the host.
This method of trace-cmd for time synchronization will be
used in this paper.

VSOCK Sockets To communicate from host to guest ma-
chine and vice versa trace-cmd can use VSOCK sockets. This
is a special socket type with an address scheme of Context ID
(CID). A CID is a number representation depends on the used
environment.

slog2sdk

The slog2sdk is a Open Source SDK for generate, convert and
view slog2 files. It is developed by Argonne National Labo-
ratory for Advanced Numerical Software (LANS). Originally
programmed for visualizing MPI applications but not depend-
ing on any MPI interface specification. It is written in Java.
Inside the slog2sdk is the graphical viewer Jumpshot and a
Java library traceTOslog?2 to create slog?2 tracing files.

slog2 file format The slog2 file format mainly tackles an
issue with very big tracing files. It is described more detailed
in the slog2 paper [7] but in general it’s about to reading full
trace files to display them in a viewer. Under the assumption
that storage is cheap, and trace files can be really large loading
the whole trace file in a viewer on an overall view level can
end in high memory pressure. To solve this issue slog2 intro-
duced a level of detail view. In short slog2 uses a tree-based
file structure and each level represents a more combined view
(aka preview events) of the underneath detailed trace view.
An overall view of the slog2 file in Jumpshot will not read
and parse the whole file, it is only a part of the trace file. If
the user wants a more detailed view, then only the necessary
section in the trace file will be read and parsed.

Topologies Slog can store with additional x and y coordi-
nate information different topologies. A topology is a draw-
able component that the slog2 viewer can draw in a graphical
way. There are three different topologies:

Event One x/y coordinate only and can represent a trace
event as a pin needle.

State Two x and one y coordinate. Can represent a state over
time like shown in a GANTT diagram.

Arrow Pair of x/y coordinate. Can show a communication
between nodes.

Jumpshot The Jumpshot viewer can open slog2 files and
represent the tracing file in a graphical way. It has zooming
capability and shows a legend of instances of slog2 topolo-
gies.

Preview Events Jumpshot has a concept of preview events.
A preview event exists to scale up the level of detail in a spe-
cific time interval of a slog2 file. If zoomed in the preview
events will be shown up as scalar topology types. This is
however as mentioned the idea behind slog2 as it does not
read the full trace file when opening the file.

SWIG

In this paper we will use SWIG [11]. SWIG is a compiler
to provide bindings from one programming or scripting lan-
guage to another one.

Interaction of used Software Projects
In this section we discuss how to connect the topics discussed
in the introduction section and how we connect them to to-
gether.

Workflow

At first, we can define a generic workflow about the necessary
steps and map them by the used Software project. Those steps
are:

Recording Linux DLM Tracing and trace-cmd

Filtering and Converting libtracecmd, dIm2slog2 and

traceTOslog2
Viewing Jumpshot

The steps Linux DLM, recording and viewing can be ac-
complished by using the existing software components men-
tioned in the instructions. A missing piece and the main part
of this section is to describe the idea of dlm2slog2 which
acts as a bridge between the steps of recording and viewing.
Each step has requirements which the following text will talk
about.

Linux DLM Tracing

We need to have requirements to the Linx DLM subsystem
that we can record the ongoing DLM API on each node.

Tracing Events Trace events are being used to record the
DLM API usage on a specific machine. There are several
ways to records trace events like explicit introducing trace
events or using a dynamic way with kprobe. In this paper
we are only using explicit trace events which are declared by
the TRACE_EVENT() macro inside the Linux kernel. Those
are considered more stable trace events and rarely changed,
whereas dynamic kprobe trace events can be changed any
programming changes affected to them. Although trace
events are never be considered to be stable.
The DLM functionality which will be traced are:

dlm_lock() This function will be called to request a lock
mode. This can either be a conversion or an initial lock
request (if the 1kb didn’t exist before). A lock mode must
always be given and a resource name for the rsb.

dlm_unlock() This function can request a unlock of a DLM
lock. Note that the lifetime of an lkb/rsb can be ended in
this case whereas the lock mode NL can unlock a lock as
well by using dlm_lock.

ast All lock requests are asynchronous calls, if a result ar-
rived which can be successful or non-successful the ast
(asynchronous system trap) callback for the specific lock
request will be called.

bast If the node and a specific lock occurs lock contention
on another node because the lock modes are incompatible
the bast (blocking ast) callback will be called, and the user
gets aware of this circumstance. As parameter the caused
incompatible lock mode will be given.

Each of the trace events has user specific fields such as
lockspace ID or resource. Those fields will be used to keep
track of the lock requests and their result when analyzing
DLM trace events.

DLM Hierarchy DLM has a hierarchy between
lockspaces, lock resources and nodes. This hierarchy
looks like the following:

e Lockspace A

— Lock Resource A
* Node A
* Node ...

— Lock Resource ...
e Lockspace ...

This hierarchy needs to being used to represent slog2
topologies for the user. It allows a simple combined per node
ID lock resource view.

Capturing with trace-cmd

The utility tool trace-cmd provided by the Linux tracing sub-
system can be used to record DLM trace events into a trace-
cmd specific trace file format. Such functionality is necessary
to provide the recorded trace events from the DLM subsystem
to the user. Therefore, we need to tell trace-cmd which trace
events need to be recorded. We either do a record the whole
DLM tracing system or specific apply filters for the necessary
trace events. To represent the DLM state close to the users
view we provide all exported DLM API trace calls. Those
are:

e dlm:dlm_lock_start

e dlm:dlm_lock_end

e dlm:dlm_unlock_start
e dim:dlm_unlock_end
e dlm:dlm_ast

e dim:dlm_bast

The start and end trace events takes an issue when record-
ing asynchronous system calls and will be described later in
this paper.

Time Synchronization The trace-cmd utility tool recently
introduced a feature about recording time synchronized traces
for several machines. Each machine will still record their own
trace-file with the recorded trace events given by a filter pa-
rameter. Trace-cmd stores several per CPU clock offsets as
trace file metadata. Those offsets reference to a global clock
source on the host machine.

Trace-cmd uses different approaches to communicate and
perform a time synchronization to calculate a clock offset.
This can be done by an IP based or VSOCK based socket
communication. The time synchronization method can either
be PTP or KVM (in trace-cmd known as x86-tsc).

In our setup we only deal with a cluster with virtual ma-
chines. For this reason we can use VSOCK sockts for com-
munication which should be the preferred solution for a vir-
tual machine environment. As time synchronization method
the kvm based should be used for the same reason. Those
are only available in a virtual machine environment. If a bare
metal cluster is used, it is required to use other methods for
communication and time synchronization such as IP based
communication or PTP time synchronization.

slog2sdk

In this work the slog2sdk was not be changed. A fork was
made of slog2sdk [2] to update the build system to provide
the build of traceTOslog2 and Jumpshot with a recent Java
compiler.

dim2slog2

This section describes the idea of dim2slog2 which is needed
to transform Linux DLM traces to the slog?2 file format. Be-
tween input and output there is a processing of the input trace
files to map them into higher slog2 topologies, such as states.
In this section we will describe how this step works.

Parsing We need to parse Linux trace files in Java to an-
alyze the recorded Linux DLM traces. To parse Linux trace
files we can use the C libtracecmd library. Cause the slog2sdk
is written in Java we use swig [11] to generate the necessary
Java bindings. Those bindings offer a higher-level Java li-
brary named tracecmd.jar which statically links to all neces-
sary depending on libraries such as libtracecmd, libtraceevent
and libtracefs. A new project trace-cmd-java [3] was created
to generate those necessary Java bindings to libtracecmd.

Trace-cmd delivers as record output a per machine trace
file. This trace-file need to be merged. To keep track on which
node ID the trace file belongs to we need a mapping between
the trace file and their node ID inside the cluster.

Asynchronous API Call and Trace Event Merge The fol-
lowing section will describe an overcome problem while try-
ing to record an asynchronous API call with the Linux Trace
subsystem. The ast and bast callbacks could arrive before
dlm_lock() and dlm_unlock() returns, due the fact of the be-
havior of an asynchronous function call. To handle this par-
ticular race we need to record those functions as start, means
before the lock request is initiated, and end, means after the
lock request was initiated. The Linux trace subsystem has
currently no higher-level mechanism to combine those two
callbacks into one which is necessary here. It is required to
merge those trace events into one and respecting the condi-
tions of an DLM asynchronous API call.

Because the behavior of the DLM API we can only ex-
pect an ast callback if dlm_lock or dlm_unlock call is suc-
cessful. In DLM that means that the function returns zero.
If the function returns non-zero then it is considered as fail-
ure and no ast callback will occur. Because keeping the trace
events chronologically we need the timestamp at the start of
the function call but at this point we don’t know if the func-
tion is successful or non-successful. For this reason a merge
between start and end of those two trace events need to be
done which contains the timestamp from start and the return
value of end trace event. All other additional user specific
trace event fields should stay the same. To doing such merge
there is a mapping required between start and end trace event
that application specific is.

This mapping is done by using the lockspace ID, lock ID
and PID in both trace events. That means if a start event oc-
curs, those fields will be remembered and being matched with
an upcoming end trace event. The timestamp of start event

will be taken and merged with the same fields inclusive the
return value of the end event.

Filtering A filter is required due the fact that slog2 scales
into the X-Axis but not into the Y-Axis. If later in the viewing
step in Jumpshot are too many locks required to be displayed
into the Y-Axis it might end in high memory pressure as the
Y-Axis displays the DLM hierarchy.

To filter out any resources from the recorded trace files we
analyze all provided trace files and provide them as a list of
combination of lockspace ID and resource name to the user.
The user has the choice to select specific locks which might
be interested. At the converting process only the selected
locks will be considered.

traceTOslog2 To generate slog2 as an output file the
slog2sdk offers the Java library traceTOslog2. The trace-
TOslog?2 requires providing all topologies that should be part
of the generated slog2 file. In this paper we only use the
topologies event and state.

The slog2 event topology will be simply mapped to a Linux
trace event. For states, we need to parse Linux trace events
and interpret their time interval. This means from a success-
ful dlm_lock or dlm_unlock call and an upcoming ast callback
can be assumed. During this operation we don’t assume an-
other call can happen. This behavior is against the DLM API
and would probably end in a non-successful DLM API call.
The time between function call and ast callback can be in-
tepreted as lock change is in progress. Another usage of state
primitives is the actual lock state on a per node perspective.
To separate different slog2 events and states a color can be de-
fined that in a later graphical view it can be easily separated
from each other.

Line ID A line ID is a slog2sdk concept and represents
one Y-Coordinate in the slog2 file format. In out case the
line ID is a generated hash value of the DLM hierarchy as
lockspace ID, lock resource name and node ID. Using a Map
from line ID to a list of trace events allows us to collect all
trace events in a sorted list according the timestamp. Having
those trace events in such order allows to sequentially parse
the DLM API operations. During the sequentially parsing of
trace events per line ID the slog2 topologies can be generated
such as event and state as mentioned earlier.

YCoordMap Besides topologies traceTOslog2 can declare
an optional YCoordMap for the slog? file format. A YCo-
ordMap describes a mapping between line ID and a hierarchy
structure in the Y-Axis. The Y-Axis can be separated into
columns to display them in a hierarchy way.

This feature need to declared in a multidimensional array
and belongs to single Y-Coordinate. Such a YCoordMap will
be used to reflect the DLM hierarchy structure. In our case the
YCoordMap will map column indices to our defined hashed
line ID which takes lockspace ID, resource name and node ID
in account.

Generate slog2 file

Taking the process mentioned before in account we can gen-
erate a slog2 file as output. At the same time it is a converting
from Linux recorded tracing files into the slog2 file format
with additional interpreting of DLM specific trace events and
visualize them in slog2 specific topologies.

Jumpshot

Jumpshot is a standalone Java application that is part of the
slog2sdk. It is the main application to view slog?2 files in a
graphical way. As mentioned it uses preview states in kind
of level of detail behavior to scale the X time Axis to allow
loading of large trace files. The Y-Axis will be displayed as
provided by the user specific YCoordMap.

How to use Step-by-Step Guide

In this section we will show a step-by-step guide how to use
every mentioned software project. At the end a slog2 file of
the DLM activity will be created and can be viewed by Jump-
shot.

Environment

The environment used in this paper is a three node virtual
node cluster. They are connected via a software bridge on
the host to offer IP based communication. Although it offers
VSOCK socket communication as well. Each virtual machine
can be addressed therefore by its CID. There is a mapping
between VSOCK and cluster node ID:

VSOCK CID Cluster NodelD

5 i
4 2
3 3

The mapping values depend on virtual machine setting and
cluster setup. They might be different on a different machine.
For this paper we assume such a mapping from CID to node
ID.

trace-cmd

This section will describe how to use trace-cmd to record
Linux DLM traces. Starting a time synchronized trace record-
ing will generate four trace-cmd specific trace files. Those
trace files are necessary as input for dlm2slog2.

Cluster Guest Machines On each cluster node we need
to start a trace-cmd agent. A trace-cmd agent will act as a
background service to accept new clients to start trace events
recording on the specific machine. This can be done by:

$ sudo trace—cmd agent

Afterwards on the command line the process will block and
the following message will appear.

listening on @3:823

This means that the agent is listening on CID 3 to accept
new clients.

SO XV R W~

EN N

Host Machine On the host machine we need to connect to
all cluster nodes and start to record Linux traces. This can be
done by:

@

sudo trace—cmd record —p nop \

—A 5 —e dim:dIm_lock_start —e dim:dIm_lock_end \
—e dim:dIm_unlock_start —e dim:dIim_unlock_end \
—e dim:dim_bast —e dim:dim_ast \

—A 4 —e dim:dIm_lock_start —e dim:dIm_lock_end \
—e dim:dIm_unlock_start —e dim:dim_unlock_end \
—e dim:dim_bast —e dim:dIim_ast \

—A 3 —e dim:dIm_lock_start —e dim:dIlm_lock_end \
—e dim:dIm_unlock_start —e dim:dim_unlock_end \
—e dim:dim_bast —e dim:dIm_ast

The parameter -A is the CID which should be connected to
record traces. The argument -e will add a whitelist filter for a
specific trace event or tracing system.

If everything goes well the following message will appear:

Negotiated kvm time sync protocol with guest 3
Negotiated kvm time sync protocol with guest 4
Negotiated kvm time sync protocol with guest 5
Hit Ctrl"C to stop recording

It shows that trace-cmd started recording time synchro-
nized DLM traces. At this point every DLM usage will be
recorded until trace-cmd receives SIGINT. After receiving the
SIGINT signal trace-cmd will quit and the following files are
available:

trace —3.dat trace —4.dat trace —5.dat

Those files are the per machine trace file which are neces-
sary for dlm2slog2. By default, the naming scheme uses the
CID of the virtual machine inside it’s trace file name. Note
there is a host trace file trace.dat which is out of interest as
trace-cmd stores metadata information into that file.

dlm2slog2

The developed program dlm2slog2 is a GUI application. It
takes a mapping between node ID and Linux DLM trace files
as input, and its output is a generated slog2 file. There exists
a way to preconfigure the necessary input and output param-
eters by:

dim2slog2 \

—traces 1=./examples/dIlm_traces/trace —5.dat:2=./examples/
dim_traces/trace —4.dat:3=./examples/dIm_traces/trace —3.dat \

—slog2 example.slog2

Pressing an analyze button will analyze all provided trace
will and lookup all resource names which where recorded of
the trace event. Available lock resources will be presented in
a table and can be moved from available resources to a fil-
tered table. The filtered table acts as whitelist and only those
who are moved to the filtered table will be considered for the
generated slog? file.

An output slog? file path must be defined to provide an
output file for the slog?2 trace file. Clicking on Generate and
Save button will start parsing and interpret the provided DLM
Linux traces and convert them to slog2 file format. In this
process the slog2 will use different topologies to represent
trace events as events and lock states as GANTT like chart.

| select slog2ilepath | [example siogz.

Figure 1: dlm2slog2 GUI with shows available resources (left
side) and filtered resources (right side)

Figure 1 shows an example screenshot of dlm2slog? the red
arrows shows the related parts involved into resource filtering.

Jumpshot

The created slog?2 file generated by dlm2slog2 from the pre-
vious step should be used here.

If a slog?2 file is opened, three windows will be showing up.
A legend window, File Information window and a Graphical
Timeline window. For a reference of the full functionality
please see the Jumpshot manual [5].

File Edit View Help

LogNam... |Je><amp\e.s\ogZ
ViewMap : I DLM |"
|| B -

Figure 2: Jumpshot main window with example.slog2 opened
and ViewMap is set to DLM

Main The main window as figure 2 shows the opened files
and a Menubar with additional functionality. One section is
the ViewMap which defaults points to the DLM ViewMap.

Selecting the ViewMap to Identity Map will switch to a one
dimensional line ID view. The Y-Axis will switch to the line
ID view which makes not much sense because the line ID is
a hashed value of lockspace ID, lock resource name and node
ID.

Legend The legend window as figure 3 shows the slog2
topologies and their specific colors. The block topology is
hereby a state topology and the needle are events that will be
drawn component in the timeline window. Topolgies EX, NL
and PENDING are representing the lock mode in a lock state.
All others represent dlm_lock, dlm_unlock, ast and bast han-
dling. There exists additional handling to colorize a specific
event e.g. if the ast returned EAGAIN as result.

Timeline Figure 4 shows the timeline window that is the
most important window because it actually shows the DLM
locking behavior in a graphical clustered view. If the DLM

]
=
D]

[lereview state

= F
= =

FEEMNEEEEENEREEHEN
FENEEEREENE

]
3]
[4]

L

Figure 3: Jumpshot legend window and various topologies
representing DLLM events and states

AV > [<Plaa[alR]s ®8e @50

Figure 4: Jumpshot timeline window representing events and
states

ViewMap is selected there exists a column separation on
the Y-Axis that means a cluster-wide lock operation can be
tracked during time. The user can zoom out and in and scroll
the timeline.

Future Work

In this section we will show possible future work what we can
do with such time synchronized tracing feature in general or
DLM specific.

Adaptation to Distributed Networks

This paper shows how the DLM network protocol was used
to present their use-case in a graphical way. The reason why
this is possible are global networking wide exchanged identi-
fier such as lockspace ID and resource name for entities like
locks. The Linux tracing subsystem and slog2sdk offers a
very generic API that other distributed network protocols can
be adapted to a similar adaptation.

Cluster Kernel Application Trace Events

Additional to the DLM lock states we should show applica-
tion events from the DLM user to give the user the possibil-
ity to know what the application is doing under certain lock

states. We probably can add another column in the DLM
ViewMap to provide those as a one-to-one mapping from
Linux tracing events and slog2 events.

Contention States

To debug lock behavior we should introduce a state to show if
a lock is in contention state. If lock modes are incompatible
to each other in a lock conversion from one mode to another
the lock state could be blocked e.g. switching from any lock
mode to exclusive. This can be useful for the application de-
veloper to show lock contention and if possible to avoid them.

Internal DLM cluster communication

We could use the arrow topology of slog2 to show DLM com-
munication within cluster nodes. This will help to debug
DLM network communication.

Continuous Integration Testing

We can use Linux time synchronized DLM traces to validate
DLM behavior. DLM has compatible locking modes, we can
check if incompatible locking modes are used in the cluster
by any node at the same time. If so this behavior should be
debugged for a possible issue in DLM. Such test can be inte-
grated into the CKI project [4].

User Space Tracing

Currently, the Linux Tracing subsystem has a pending feature
request to introduce user space tracing functionality. With
user space tracing functionality we can use the same approach
used in this paper for user space applications. It’s not known
if time synchronization works in this environment as well and
is one interested point to try out.

Runtime Kernel Optimization

Another non-debugging idea is to collect locking stats by us-
ing Linux tracing subsystem. This can be used to change the
DLM lock master to reduce network communication. How-
ever, if this really brings any advantages needs to be figured
out.

Another optimization would be to track network flow with
skbmark values and changing qdisc behavior.

Live Tracing

Currently, we don’t support any live tracing functionality yet.
That means we always have trace files and convert them to
generate a slog2 file. A stream like based input for DLM
traces and a direct converting into slog2 on the fly could be
done.

References

[1] Aring, A. dlm2slog2. https://gitlab.com/
netcoder/dlm2slog2/-/wikis/home.

[2] Aring, A. fork of slog2sdk. https://gitlab.com/
netcoder/slog2sdk.

[3] Aring, A. Java bindings for trace-cmd. https://
gitlab.com/netcoder/trace-cmd-Jjava.

[4] Authors, T. C. P. CKI Project Documentation. https:
//cki-project.org/.

[5] Chan, A.; Gropp, W.; and Lusk, E. Jumpshot-4 Users
Guide. https://www.mcs.anl.gov/research/
projects/perfvis/software/viewers/
Jumpshot—-4/usersguide.html.

[6] Chan, A.; Gropp, W.; and Lusk, E. slog2sdk. https:
//www.mcs.anl.gov/research/projects/
perfvis/download/index.htm#slog2sdk.

[7]1 Chan, A.; Gropp, W.; and Lusk, E. 2008. An efficient
format for nearly constant-time access to arbitrary time in-
tervals in large trace files. Scientific Programming 16(2-
3):155-165.

[8] Corosync. Corosync - The Corosync Cluster Engine.
https://corosync.github.io/corosync/.

[9] Linux Kernel Documentation. Global File Sys-

tem 2. https://www.kernel.org/doc/html/
latest/filesystems/gfs2.html.

[10] Linux Kernel Documentation. OCFS2 filesys-
tem. https://www.kernel.org/doc/html/
latest/filesystems/ocfs2.html.

[11] SWIG. Simplified Wrapper and Interface Generator.
https://www.swig.org/.

[12] Tracing, L. https://trace-cmd.
org/.

[13] Wikipedia. Distributed Lock Manager (DLM).
https://en.wikipedia.org/wiki/
Distributed_lock_manager.

[14] Wikipedia. GANTT chart. https://en.
wikipedia.org/wiki/Gantt_chart.

trace-cmd.

https://gitlab.com/netcoder/dlm2slog2/-/wikis/home
https://gitlab.com/netcoder/dlm2slog2/-/wikis/home
https://gitlab.com/netcoder/slog2sdk
https://gitlab.com/netcoder/slog2sdk
https://gitlab.com/netcoder/trace-cmd-java
https://gitlab.com/netcoder/trace-cmd-java
https://cki-project.org/
https://cki-project.org/
https://www.mcs.anl.gov/research/projects/perfvis/software/viewers/jumpshot-4/usersguide.html
https://www.mcs.anl.gov/research/projects/perfvis/software/viewers/jumpshot-4/usersguide.html
https://www.mcs.anl.gov/research/projects/perfvis/software/viewers/jumpshot-4/usersguide.html
https://www.mcs.anl.gov/research/projects/perfvis/download/index.htm#slog2sdk
https://www.mcs.anl.gov/research/projects/perfvis/download/index.htm#slog2sdk
https://www.mcs.anl.gov/research/projects/perfvis/download/index.htm#slog2sdk
https://corosync.github.io/corosync/
https://www.kernel.org/doc/html/latest/filesystems/gfs2.html
https://www.kernel.org/doc/html/latest/filesystems/gfs2.html
https://www.kernel.org/doc/html/latest/filesystems/ocfs2.html
https://www.kernel.org/doc/html/latest/filesystems/ocfs2.html
https://www.swig.org/
https://trace-cmd.org/
https://trace-cmd.org/
https://en.wikipedia.org/wiki/Distributed_lock_manager
https://en.wikipedia.org/wiki/Distributed_lock_manager
https://en.wikipedia.org/wiki/Gantt_chart
https://en.wikipedia.org/wiki/Gantt_chart

	Keywords
	Introduction
	Cluster
	Distributed Lock Manager
	Linux Tracing
	Kernel-based Virtual Machine
	slog2sdk
	SWIG

	Interaction of used Software Projects
	Workflow
	Linux DLM Tracing
	Capturing with trace-cmd
	slog2sdk
	dlm2slog2
	Generate slog2 file
	Jumpshot

	How to use Step-by-Step Guide
	Environment
	trace-cmd
	dlm2slog2
	Jumpshot

	Future Work
	Adaptation to Distributed Networks
	Cluster Kernel Application Trace Events
	Contention States
	Internal DLM cluster communication
	Continuous Integration Testing
	User Space Tracing
	Runtime Kernel Optimization
	Live Tracing

