When regular expressions meet XDP

Ivan Koveshnikov
Gecore
Luxembourg

ivan.koveshnikov@gcorelabs.com

Abstract

A key to an effective way to mitigate DDoS attacks — is to
know the protocol, that is going to be protected. Effective
packet parsers allow discarding garbage traffic at high speeds.
Understanding protocol state machines allows building state-
ful filters, that can spot and block malicious activity. However,
such an approach requires a lot of programming work, espe-
cially if the DDoS protection system must be able to quickly
adopt new protocols.

In such cases filtering by regular expressions helps to deliver
coarse packet filtering by payload content. Extremely flexi-
ble, regular expressions allow to completely skip programming
work and define packet filters by an end user.

Evaluation of regular expressions at network speeds is usually
done in Deep Packet Inspection software, which is mostly a
transparent appliance installed somewhere on the packet path.
Being transparent DPI solutions doesn’t need a real network
stack for packet processing, allowing to offload regular expres-
sions to the user-space network stack.

While building a rich filtering engine capable to work on the
same servers that do provide services we concluded, that of-
floading regular expressions to user space is not as flexible as
we need. In this article and talk we will show, how regular
expression filtering can be done in the XDP context, what is
the performance of the resulting solution, and how it affects
other parts of network processing. We will also explain our
motivations and use for the community.

Improving network scalability with XDP
How DDoS trends affect network design

Although DDoS attacks may have different natures and can
be not only L3 flooding, but also sophisticated L7 layer at-
tacks, specially designed for the target application, — all of
them have common trends. We have noticed that a common
DDoS attack is doubled every year in terms of capacity. If
average attacks to our networks in Q1-Q2 of 2021 were close
to 300Gbps, in 2022 it came to almost 700Gbps [3][1].

In practice, it means that the capacity of the DDoS pro-
tection system in our network must be scaled at least twice
annually. But at the same time, an average attack duration is
not very high, and it leads to the opposite situation. Most of
the time the DDoS protection system is not under attack, pro-
cesses much less amount of traffic and needs fewer resources.

Sergey Nizovtsev
Tempesta Technologies Inc.
USA
sn@tempesta-tech.com

Balancing between the capacity of the protection system
and its power and cost efficiency, we had to change our net-
work design, make it more flexible, and able to handle higher
loads.

Limitations of centralized DDoS protection

In our traditional design (fig. [I) we use servers with a dedi-
cated “DDoS protection” role. Filtering malicious traffic, the
servers remain transparent for the rest of the network. Ser-
vices, hidden behind such protection, may act as there is no
presence of an attack on levels lower than L7. DDoS protec-
tion in this approach is centralized and works stand-alone.

CDN Servers

DDoS Protection

Gcore
Infrastructure

ﬁustorm
/

Network

o

Figure 1: Centralized DDoS protection layer

A transparent filtering node is a well-studied approach that
has a lot of benefits. First, the kernel-bypass technique can
be a base for a fast packet processing engine, allowing it to
process traffic with high throughput and low latency. Second,
assigning dedicated CPU cores to specific tasks or applica-
tions provides performance guaranties on various loads, es-
pecially on regular expression evaluations — one of the most
CPU-intensive loads. As a part of the traditional approach,



we use a filtering solution provided by a 3rd-party vendor and
developed on top of DPDK. It has all those advantages.

Of course, such a solution is not a silver bullet and has
several drawbacks. User space networking engines usually
prefer poll mode drivers for the immediate processing of net-
work packets, but monitoring and predicting the performance
of PMD drivers cannot be done directly, instead side subsys-
tems like memory pools provide more performance insights.
3rd-party solutions are hard to extend and update, this limits
flexibility and the ability to follow customer needs.

In addition to these common problems, our scalability re-
quirements have brought us new ones. Every time a new
CDN server is added to one of our locations, the server group
used for DDoS protection also needs to be updated. The more
servers you have the higher the probability that at least one of
them is not in an operational state. DDoS protection servers
are not an exception here.

Enabling and disabling DDoS protection on demand can
help, but must be used with caution. Some countermeasures
can be enabled during attacks without harming legitimate
users, while others — not. Of course, several attacks may hap-
pen at the same time and an on-demand policy must take into
account.

Distributed DDoS protection

To improve the scalability of our network, we had to rethink
the centralized approach and move to distributed DDoS pro-
tection (fig. [2). In distributed design, the special "DDoS pro-
tection’ role disappears, and every CDN server starts to pro-
vide DDoS protection services.

CDN Servers
with integrated
DDoS protection

Gceore
Infrastructure

/usmm
/

Network \

—

Figure 2: Distributed DDoS protection layer

In this scheme DDoS protection can be distributed across
a bigger amount of servers. On the one hand, each protection
node has more relaxed performance requirements to provide
the same level of overall throughput. On the other, efficient
implementation can lead to an even better overall result.

Moving DDoS protection closer to the protected applica-
tion also allows efficient information exchange between the
application and the protection system. E.g., if a web server
detects an L7 attack, it can push additional rules to the lo-
cally running protection system almost immediately.

But the biggest change from the centralized approach — lo-
cality of some protected applications. If previously all the
protected applications were deployed on some other servers,
and DDoS protection could be implemented using any kind
of technology stack, now some of them run on the same host.
In our case, all of these applications have intensive network
I/0O and require efficient network stack.

DDoS protection must process packets delivered to every
service and application, leading to the usual problem of co-
existing user-space network stack and common applications
with socket API. Especially if an application relies on ad-
vanced kernel features like KTLS or MSG_ZEROCOPY. Al-
though various projects provide userspace network stack [2]
or socket API [6], it complicates the overall solution signifi-
cantly.

Because of that, we could not reuse the existing solution for
mitigating DDoS attacks on CDN servers and had to switch
to XDP for traffic filtering.

REX in the packet pipeline

Creating complex eBPF applications is not simple. Cycles
and branches quickly raise complexity for the kernel verifier,
and it becomes too difficult to add new features and pass all
the sanity checks. The only way to create a complex eBPF
program is to combine BPF-to-BPF and tail calls.

For every customer we use a different set of filtering rules
and only a subset of available countermeasures. To achieve
both flexibility of configuration and coping with problems
of increasing complexity, we have split countermeasures into
separate eBPF programs (fig. [8). For every customer we build
a pipeline of tail calls that suit customer needs.

While some countermeasures are simple and can be easily
implemented in XDP, others can be very complicated and re-
quire implementation inside the kernel with an eBPF helper
function. The processing of regular expressions is a perfect
example of such a countermeasure.

We need to filter packets by regular expressions for both
allow and block lists. Some of our customers have a fixed
protocol format, that can be validated using regular expres-
sions. Only packets that match at least one of the defined
expressions are passed to protected servers. In this mode a
protected server receives only packets, that it can parse and
identify.

Block list is the opposite mode, where the protection sys-
tem blocks all the packets, that can be matched by the expres-
sions. This mode is intended to react to security events when
malicious traffic can be identified by some pattern inside a
payload.

Because regular expressions are heavy operations, we try
to use them closer to the end of the filtering pipeline, when
all other countermeasures already have dropped whatever was
possible. But such behaviour is not always possible, and the
REX countermeasure can be not the last step in the pipeline.



Dissector

Find packet headers
Extract 5-tuple

v

Flow Router

Find Policy by 5-tuple

v

Policy Pipeline
BPF prog
Tail Calls
Verdict
Pass/DropiTX

Save statistics

Figure 3: Distributed DDoS protection layer

Problems of REX in eBPF
Packet processing engine

The major problem with regular expressions — the complex-
ity of the engine [7]. The only correct solution is to choose
the fastest and the most suitable implementation and use it
together with eBPF. The fastest and the most flexible imple-
mentation is DPDK-based Hyperscan. Alike all other imple-
mentations, it runs at the user-space level and cannot be called
from XDP directly.

As noticed above, REX is not the final countermeasure,
and we still may want either to push the passed packets into
the kernel or to perform some other processing. Thus, inte-
gration of Hyperscan into XDP via AF _XDP sockets API was
not possible, and providing an eBPF helper function was the
only option.

The Linux kernel 5.16 has introduced an initial support of
in-module eBPF helpers[4], and wrapping Hyperscan’s run-
time into a loadable kernel module becomes possible without
the need of compiling it into the kernel itself. However, this
work has been finished only in the 5.18 kernel, and it was
not possible to register XDP helpers in prior versions. During
our work, the latest release of the kernel was 5.17 and 5.18
haven’t yet been released, and we had to apply a little patch
to the 5.17 kernel to support this.

However, this wasn’t the only problem that required kernel
patching. One of the reasons, that makes Hyperscan so fast,
— use of the vector instructions like AVX512 or AVX2. Al-
though some kernel subsystems use vector instructions, they
are avoided as much as possible because saving and restor-
ing the FPU state on context switch is an expensive operation

[S]. Two approaches are possible: save/restore FPU state per
packet or during the whole NAPI process.

Per packet FPU state operations are easier to implement
because they require no patching of the kernel, all the FPU-
related operations will be isolated in the eBPF function
helper. The per-packet approach also may be more benefi-
cial, when only a small fraction of the traffic requires REX
operations. On the other hand, NAPI-wide operations may
be more effective if the majority of network packets require
REX operations, but at the same time, they may harm la-
tency, if no REX operations are required at all. The decision,
on the approach to use, depends on target traffic scenarios.
Later in this article, we are going to determine those scenar-
ios and estimate performance penalties. Anyway, both ap-
proaches happen during the SoftIRQ context, while other ker-
nel subsystems may use FPU in different contexts and don’t
expect that SoftIRQ may change FPU state, thus kernel func-
tions kernel _fpu_begin () /kernel_fpu_end () must
be paired with disabling of task preemption and SoftIRQs.

As the XDP program runs to completion on every packet,
the budget for processing a single packet with regular expres-
sions is very limited. Some regular expressions can be evalu-
ated faster, some — slower, and some can get lead to heavily
degraded performance on some traffic flows. Understanding
budgets at runtime is very crucial, since going beyond the lim-
its on traffic for one customer may lead to service degradation
for other customers.

Hyperscan runtime requires a scratch area to work. This
area needs to be allocated NUMA-aware, otherwise, signifi-
cant performance degradation will happen. Per-CPU alloca-
tor in the kernel can allocate NUMA-aware scratch area, bit
its allocation is limited to 32Kb, which can result in limited
abilities of the runtime. For the moment we have not faced
any problems with the scratch area size.

The eBPF verifier rejects calls with variable-sized buffer
pointers. To get around this problem, we pass XDP context
along with packet offsets to the module.

The easiest to solve issue is related to the eBPF code or-
ganization. When an eBPF program depends on a function
from a loadable module, it cannot be loaded to the kernel if
the module is not yet loaded. This requires extra work for
conditional load of this eBPF program, when loading the rest
of eBPF programs can be performed on systems without such
a loadable module.

Processing in stream mode can be problematic in the XDP,
since the XDP buffer lifetime is limited by the XDP program
routine. In our use case, REX operations are applied only to
UDP datagrams and only to packets that can fit public internet
MTU, i.e., packets with a length lower than 1518 bytes, so we
have not worked or even paid attention to this problem.

Configuration

Hyperscan run-time requires a database — a compiled set of
patterns — to work. When we provide a configuration for a
customer, we define a set of patterns to be evaluated for each
traffic flow. The Hyperscan compiler processes the patterns
and creates a database for the run-time. The loadable module
needs to access this database somehow.



Pattern: Ipri.*atel/s Pattern*: Ipri.*atels Pattern*: 9 rules from clients
o regex Corpus: 'b*N Corpus: rand([alphabet])*N Corpus: rand([alphabet])*N
g Stream: #1000, isg=1ms Stream: #1000, isg=1ms Stream: #1000, isg=1ms
rx 256 itx 512 rx 512 ix 1024 ¢ 512 itx 1024
pkt, Mpps bw, Gbps cpu, % pkt, Mpps bw, Gbps cpu,% pkt, Mpps bw, Gbps cpu,% pkt, Mpps bw, Gbps cpu, %
64 69.63 3342 39 6911 33.17 49 69.30 33.26 50 60.98 29.27 45
128 79.25 78.61 43 61.42 60.95 48 59.53 59.06 70 71.59 71.02 69
256 69.25 139.61 40 65.23 131.22 54 43.89 88.49 75 69.07 139.24 59
512 39.86 161.98 21 39.84 161.87 36 30.74 124.92 77 39.90 162.17 29
1024 2195 179.08 11 21.93 178.95 21 21.80 177.92 78 21.95 179.10 15
1500 15.85 189.67 8 15.86 189.85 16 15.95 190.88 71 15.96 190.98 11

Figure 4: Hyperscan benchmark results

The database lifetime is managed by the user-space pro-
cess. There are many variants, of how this can be achieved,
but the most suitable ones are configfs and eBPF maps.
eBPF maps already have everything to provide necessary syn-
chronization and to take care of the lifetime of each database.
But the entry size of the eBPF map needs to be defined before-
hand, which may lead to the inability to load a new database
if its size can not fit into the existing table. Such situations
can be only resolved by recompilation of all the users of
such map. On the other hand, each entry, loaded into the
configfs, is more flexible with its size, and such an issue
is not related.

The configfs approach seemed for us more generic and
suitable for any needs, so we decided to choose this way.

Benchmarks

TODO: more benchmarks and conclusions will come with the
release version of the document. For now, refer to fig. [Z_q

Lessons learnt

The ability to add eBPF helpers in loadable modules adds re-
markable abilities to implement very complex features, that
can not fit into eBPF limitations. The only reason to pack
the kernel was caused in our case by the requirement of run-
ning vector instructions during packet processing. Upstream-
ing this patch is doubtful though. The FPU state save/restore
operations are expensive and will cause performance degra-
dation for all other workloads except ours.

Running the REX in the XDP

This section is to be filled once the final benchmarking results
will be achieved.

eBPF problems

Although we have succeeded in the development of a DDoS
protection system on top of XDP, we have faced several prob-
lems.

First, eBPF has a lack of offloading support, while DPDK
and the kernel itself get a lot of benefit from that. The XDP
Hints initiative moving forward, and we expect a lot of ad-
vantages there.

Despite the XDP has become one of the standards in net-
working, it is still very loosely supported by the NIC vendors.

There is a lot of documentation on DPDK, how to achieve the
same level of performance as vendors do, and how to tune
the system for the best performance. All that documentation
is updated with every new version of DPDK or NIC. None
of that documents exists for XDP. A developer has to either
experiment on a production server or build a test lab to under-
stand the correct settings. The lack of performance reference
is frustrating.

References

[1] Comparitech. 20+ ddos attack statistics and facts
for 2018-2022. https://www.comparitech.
com/blog/information—-security/
ddos—-statistics-facts/.

[2] F-stack github repository. https://github.com/
F-Stack/f-stackl

[3] Geore. Ddos attack trends in ql-q2 of
2022. https://gcore.com/blog/
ddos—attack—-trends-in-glg2-o0f-2022/.

[4] bpf: Introduce bpf support for kernel mod-
ule function calls. https://git.kernel.
org/pub/scm/linux/kernel/git/
torvalds/linux.git/commit/?id=

2357672c54c3£748£675446f8eba8b0432ble/e2.

[5] Krizhanovsky, A. 2019. Fast http string process-
ing algorithms. |https://tempesta-tech.com/
research/http_str.pdfl

[6] Mellanox libvma github repository.
github.com/Mellanox/libvmal

[71 Wang, X.; Hong, Y.; Chang, H.; Park, K.; Lang-

https://

dale, G.; Hu, J.; and Zhu, H. 2019. Hyper-
scan: A fast multi-pattern regex matcher for modern
cpus. Proceedings of the 16th USENIX Symposium on

Networked Systems Design and Implementation (NSDI
’19). https://www.usenix.org/conference/
nsdil9/presentation/wang—-xiang.


https://www.comparitech.com/blog/information-security/ddos-statistics-facts/
https://www.comparitech.com/blog/information-security/ddos-statistics-facts/
https://www.comparitech.com/blog/information-security/ddos-statistics-facts/
https://github.com/F-Stack/f-stack
https://github.com/F-Stack/f-stack
https://gcore.com/blog/ddos-attack-trends-in-q1q2-of-2022/
https://gcore.com/blog/ddos-attack-trends-in-q1q2-of-2022/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2357672c54c3f748f675446f8eba8b0432b1e7e2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2357672c54c3f748f675446f8eba8b0432b1e7e2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2357672c54c3f748f675446f8eba8b0432b1e7e2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2357672c54c3f748f675446f8eba8b0432b1e7e2
https://tempesta-tech.com/research/http_str.pdf
https://tempesta-tech.com/research/http_str.pdf
https://github.com/Mellanox/libvma
https://github.com/Mellanox/libvma
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang

	Improving network scalability with XDP
	How DDoS trends affect network design
	Limitations of centralized DDoS protection
	Distributed DDoS protection

	REX in the packet pipeline
	Problems of REX in eBPF
	Packet processing engine
	Configuration

	Benchmarks
	Lessons learnt
	Running the REX in the XDP
	eBPF problems


