
Ahmed Abdelsalam
ahabdels@cisco.com

Linux Netdev 0x16
SRv6 Network Programming workshop

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

Agenda

Topic Speaker Affliation Duration Notes

SRv6 update Ahmed Abdelsalam Cisco Systems 25 Onsite

ROSE (Research on Open SRv6 Ecosystem) update Stefano Salsano University of Rome "Tor Vergata" 10 Remote

Linux Kernel update Andrea Mayer University of Rome "Tor Vergata" 25 Onsite

Cilium/eBPF Daniel Bernier Bell Canada 20 Remote

SONiC Reshma Sudarshan Intel 15 Remote

FRR Carmine Scarpitta University of Rome "Tor Vergata" 25 Onsite

Record-Speed Standardization and Deployment
SRv6

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

Thank you

• Lead operators

• EcoSystem Partners

• Academic and Open-Source Partners

• IETF Partners

• Cisco SR Team

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• SRv6 uSID: CKN, MPLS WC

• SRv6 Ultra-Scale SR Policy: 26 uSID push at linerate: demo

• BGP PIC Edge with SRv6 Summarization: ISIS UPA: demo

• Path Tracing: NANOG85 (Mike Valentine, Fellow at Goldman Sachs), Tutorial

segment-routing.net

https://www.segment-routing.net/tutorials/2021-11-18-CKN-SRv6/
https://www.segment-routing.net/conferences/MPLS-WC-2022-Clarence-Filsfils/
https://www.segment-routing.net/demos/26-usid-push-linerate/
https://www.segment-routing.net/demos/upa/
https://www.segment-routing.net/conferences/2022-06-08-NANOG85-path-tracing/
https://www.segment-routing.net/path-tracing

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

Introduction

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• Customer packet is encapsulated from ingress to egress of the SR Domain

• SRv6 is applied to the OUTER header

• The inner packet is untouched

Transparent Service

SR DOMAIN1 2 10.2/16

IPv4 DA 10.2.0.2 IPv4 DA 10.2.0.2
IPv6 Outer Header, potential SRH, NH=IPv4

IPv4 DA 10.2.0.2

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• The End-to-End Policy is encoded as a Network Program
− The first instruction is in the outer DA
− The remaining instructions are in the SRH

• An instruction (a SID) may be bound to any behavior
− TILFA FRR and uLoop Avoidance
− Traffic Engineering: internal to the domain and across peering links
− L2/L3 VPN’s
− NFV
− Any HW custom behavior: P4 on Silicon1
− Any SW custom behavior: Container orchestrated by Kubernetes

• Powerful Service Creation
− Any service can be encoded as an ordered list of instructions (Low-latency Slice, VPN, NFV)

SRv6 Network Programming - RFC8986

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• The state (network program) is in the header

• The state is not in the fabric

Stateless Fabric

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• SRv6 is a native extension of IPv6
− RFC 8754
− As foreseen 25 years ago by RFC2460

• SRH contains an ordered list of SID’s

SR Extension Header

Metadata TLV

Segments Left

Locator 1 Function 1

Locator 2 Function 2

Locator 3 Function 3

TAG

© 2022 Cisco and/or its affiliates. All rights reserved. Cisco Public 11

Unified Data Plane And Seamless Deployment

• A unified data plane spanning from
Application socket to Internet peering
though Datacenter, Access, Metro,
Core, Peering

• A single data plane natively supported
by all nodes – just IP!

• Seamless forwarding through IPv6
transit nodes

• Most use-cases do not need an SRH
− DA SID contains up to 6 micro-

instructions (uSID’s)

Cell Site
User Equipment Container

Peering

MetroAccess

Host

Datacenter

© 2022 Cisco and/or its affiliates. All rights reserved. Cisco Public 12

• Cisco Knowledge Network "SRv6 Standardization Deployed at Scale”
− https://www.segment-routing.net/tutorials/2021-11-18-CKN-SRv6/

More on SRv6

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

Deployment Status

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• 3 years of commercial deployment (2019-2022)

• ~100M SRv6 subscribers

• ~100 deployments, with ~14 public reports

• Across markets (Web, SP, Enterprise) and geographies (Africa, Asia, EU, US)

Record-Speed Deployment

SoftBank Rakuten Indosat MTN Uganda Noia

Iliad Alibaba
China

Telecom
China Bank Cernet2

Free Bell Canada China Unicom Line
NEW

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

Link to PR - https://newsroom.cisco.com/press-release-
content?type=webcontent&articleId=1969030

https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1978361

• Nationwide deployment in Italy

• 1000 Cisco NCS 5500

• 1800 Iliad Nodeboxes
– Whitebox based on the Linux kernel SRv6 implementation

https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1969030
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1978361

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

Commitment to SR Lead-Operators

Vendor eco-system

Open-Source eco-system

Standard-Based Technology

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• Proposed Standard
− RFC 8402 SR Architecture
− RFC 8754 SRv6 DataPlane
− RFC 8986 SRv6 Network Programming
− RFC 9252 SRv6 BGP Extension
− RFC 9256 SR Policy
− RFC 9259 SRv6 OAM

Mature Standardization Much faster standardization than usual

Sign of the SRv6 Industry Endorsement

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

Merchant Silicon

Rich SRv6 Ecosystem

Smart NIC

PartnersOpen-Source Applications

Network Equipment Manufacturers
Open-Source Networking Stacks

Pyroute2 SERA

BGP

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• 2020/04: EANTC: SRv6 interop between Cisco, Huawei, Juniper, Arrcus, Ixia (link)
− Classic IPv6 nodes as SRv6 transit nodes

− SRv6-L3VPN for IPv4 and IPv6 services
− SRv6 TI-LFA FRR link protection with SRH insert
− SRv6 EVPN for E-Line and EVPN L3VPN services
− SRv6 TE SR Policy

• 2021/02: NetOne Systems (link)
− Cisco XR, Cisco NX, Juniper

• 2021/09: EANTC: SRv6 interop between Cisco, Huawei, Juniper, Nokia, Spirent (link)
− SRv6-Based Global IPv4 and IPv6 services

− SRv6-L3VPN for IPv4 and IPv6 services

− SRv6 TI-LFA FRR local SRLG protection with SRH insert

− SRv6 EVPN for E-Line and EVPN L3VPN services

− IGP Flex-Algo using TWAMP-measured link delays

Many Successful Interops

https://www.eantc.de/fileadmin/eantc/downloads/events/MPLS2020/EANTC-MPLSSDNNFV2020-WhitePaper.pdf
https://www.netone.co.jp/knowledge-center/netone-blog/20210210-1/
https://eantc.de/fileadmin/eantc/downloads/events/2021/MPLSSDNInterop/EANTC-MPLSSDNInterop-2021-WhitePaper.pdf

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

SRv6 uSIDs

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• Industry:
− SRv6 Micro Segment
− SRv6 uSID
− Briefly: uSID

• IETF: NEXT-C-SID
− Briefly: Next
− IETF document: draft-ietf-spring-srv6-srh-compression-01

− Training: link

SRv6 uSID Terminology

https://www.segment-routing.net/tutorials/SRv6-uSID

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• SRv6 Network Programming (RFC8986)
− The source encodes any end-to-end program as an ordered list of instructions
− The first instruction is in the outer DA
− The remaining instructions are in the SRH

• An instruction is called a SID

• A Container SID may contain up to 6 micro-instructions called uSID’s

Container of 6 uSID’s

FC00:0000:1111:2222:3333:4444:5555:6666
uSID1 uSID2 uSID3 uSID4 uSID5 uSID6uSID Block

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• uSID reuses SRH (RFC8754) without any change

• uSID strictly applies the SRv6 Network Programming (RFC8986)

• uSID can be bound to any Network Programming Instruction

Perfect SRv6 Integration

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

SRv6 uSID offers the best SRv6 Compression

SRv6: 208 bytes

SRv6 uSID: 64 bytes

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

SRv6 uSID in Deployments

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• 5G End-to-End Network Slicing based on SRv6 uSID Flex-Algo
− SRv6 uSIDs are allocated from the ULA address range
− SRv6 uSID ISIS Flex-Algo: Low-Cost vs Low-Delay
− SRv6 uSID BGP services
− SRv6 uSID TILFA
− Cisco NCS5500 and NCS-540 series

• Innovation in partnership with Cisco
− BGP PIC Core and Edge with SRv6 Summarization: ISIS UPA (demo)
− SR BW counters for deterministic and scalable capacity planning and BW guarantee

Rakuten – SRv6 uSID in Deployment

https://www.segment-routing.net/conferences/MPLS-WC-2022-Amit-Dhamija/ https://www.segment-routing.net/conferences/MPLS-WC-2022-Daniel-Voyer/

https://www.segment-routing.net/conferences/MPLS-WC-2022-Daniel-Bernier-Jesper-Eriksson/
© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• Bell promptly switched from SR-MPLS to SRv6 uSID

• Continued Simplification (remove MPLS dataplane)

• Better Routing Scale: Summarization

• Better HW Scale: linerate 26 uSID push for end-to-end SR Policy

Bell Canada - SRv6 uSID Deployment

• Seamless Deployment (6 uSID’s in DA without SRH)

• End-to-End IP Unified Dataplane from socket to Internet Peering
− SRv6-TE Policy: topological and service uSID’s

• Service Programming

• Reduce network service costs by up to 90%
footprint by 75%
power consumption by as much as 66%

https://www.segment-routing.net/conferences/MPLS-WC-2022-Daniel-Bernier-Jesper-Eriksson/

https://www.segment-routing.net/conferences/MPLS-WC-2022-Daniel-Voyer/

https://www.segment-routing.net/conferences/MPLS-WC-2022-Amit-Dhamija/
https://www.segment-routing.net/conferences/MPLS-WC-2022-Daniel-Voyer/
https://www.segment-routing.net/conferences/MPLS-WC-2022-Daniel-Bernier-Jesper-Eriksson/

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• Cisco, NoviFlow, Arrcus, Nokia, Ciena

• Merchant: Silicon One, Broadcom, Marvell, Barefoot

• Open Source: Linux, FD.io, P4, eBPF, Cillium, SAI, SONIC, FRR

SRv6 uSID - Rich Eco-System

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• SRv6 Technology Status and Deployment Update
− https://www.segment-routing.net/conferences/MPLS-WC-2022-Clarence-Filsfils/

More on uSID

https://www.segment-routing.net/conferences/MPLS-WC-2022-Clarence-Filsfils/

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

Path Tracing

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• What exact path was taken by one specific packet?
• 40-year-old unsolved IP problem

• 4 possible “valid” ECMP paths
• Packet may have also taken an invalid path (Routing or FIB corruptions)

How did the packet arrive from A to F?

A

B D

C E
F

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

IPv6 header: A to M

PT header: (AB, Time, Load)

Payload

BE
• Implemented at linerate: Reports true packet experience

• Highly compressed for low MTU overhead
• Only 3 bytes per hop!

• Each transit router records:
• Outgoing interface ID
• Timestamp (with 0.06ms accuracy)
• Load

• Native interworking with legacy nodes
• Seamless deployment

How does it work?

Stamping Trajectory in PT Header

A

B D

C E
F

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

• Cisco Shipping in CY22
− C8000 (Q200), NCS5700 (J2), ASR9000 (LS)

• Rich Eco-System
− Cisco, Broadcom, Marvell, +others

• Rich Open-Source
− Linux, FD.io VPP, P4, Wireshark, TCPDUMP

• Path Tracing is being standardized at IETF
− Path Tracing in SRv6 networks (ietf.org)
− Path Tracing in SR-MPLS networks (ietf.org)

Ecosystem

https://www.ietf.org/id/draft-filsfils-spring-path-tracing-02.html
https://www.ietf.org/id/draft-filsfils-spring-path-tracing-srmpls-00.html

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

Conclusion

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

Simplicity Always Prevails

Furthermore with more scale and functionality

LDP

RSVP-TE

BGP 3107

MPLS

UDP/VxLAN

NSH

33

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public.

Stay up-to-date

amzn.com/B01I58LSUO !"!#$%&'$"()*(+,-./01234

segment-routing.net

linkedin.com/groups/8266623

twitter.com/SegmentRouting

facebook.com/SegmentRouting/

SRv6 Part III
CY2023

ask-segment-routing@cisco.com

https://amzn.com/B01I58LSUO
amazon.com/dp/B07N13RDM9
http://www.segment-routing.net/
https://www.linkedin.com/groups/8266623
https://twitter.com/SegmentRouting
https://www.facebook.com/SegmentRouting/

Stefano Salsano

University of Rome Tor Vergata / CNIT

ROSE - Research on Open SRv6 Ecosystem

Linux Netdev 0x16

The ROSE project

ROSE is an “umbrella” project, started in 2017, to develop and
maintain an Open Source Ecosystem for SRv6.

The ROSE project has contributed to the standardization of SRv6
in IETF.

Over the years, ROSE has received funding by CISCO, under the
CISCO University Research Program.

2

The ROSE project

ROSE includes several sub-projects (10+), related to multiple
aspects of the SRv6 technology:

● Data Plane
● Control Plane
● SRv6 host networking stack
● SRv6 integration with applications
● SRv6 integration with Cloud/Data Center Infrastructures

3

https://netgroup.github.io/rose/

https://netgroup.github.io/rose/

The ROSE ecosystem for SRv6

55

Data
Plane

Control
Plane

Web
dashboard

Controller

Apache KafkaNorthBound APIs
(gRPC)

SouthBound APIs
(gRPC)

Orchestrator
ArangoDB

InfluxDB Big-data
Plane

A sample of the sub-projects

● SRv6 Linux Kernel data plane
● SRv6 micro SIDs (P4 and Linux Kernel)
● Path tracing : data plane(s), control plane, algorithms

● SRv6 VM and Tutorials
● k8s-SRv6 : extending Kubernetes to make use of SRv6

6

SRv6 VM and Tutorials

https://netgroup.github.io/rose/rose-vm.html

A ready-to-go Virtual Machine is available for tutorial and development
It includes an emulated network environment based on Mininet and relies
on the Linux kernel for implementing the SRv6 data plane.

Two step-by-step tutorials are included:

● Manual creation of SRv6 tunnels in the Linux SRv6 data plane
● ROSE Control Plane : setting up SRv6 tunnels from the SDN controller

7

https://netgroup.github.io/rose/rose-vm.html

SRv6 VM and Tutorials

https://netgroup.github.io/rose/rose-vm.html

A ready-to-go Virtual Machine is available for tutorial and development
It includes an emulated network environment based on Mininet and relies
on the Linux kernel for implementing the SRv6 data plane.

Two step-by-step tutorials are included:

● Manual creation of SRv6 tunnels in the Linux SRv6 data plane
● ROSE Control Plane : setting up SRv6 tunnels from the SDN controller

8

https://netgroup.github.io/rose/rose-vm.html

k8s-SRv6 - Extending Kubernetes with SRv6

https://netgroup.github.io/k8s-srv6/

k8s-SRv6 extends Kubernetes to make use of SRv6

We have extended the Calico-VPP Kubernetes networking plugin with a
new SRv6 overlay that supports:

● Encapsulation of both IPv4 and IPv6 pods networking
● Traffic Engineering of the overlay tunnels

9

https://netgroup.github.io/k8s-srv6/

Scientific papers

15 scientific papers (list in https://netgroup.github.io/rose/),
including this tutorial:

P. L. Ventre, S. Salsano, M. Polverini, A. Cianfrani, A. Abdelsalam, C. Filsfils, P.
Camarillo, F. Clad,
“Segment Routing: a Comprehensive Survey of Research
Activities, Standardization Efforts and Implementation Results”,
IEEE Communications Surveys & Tutorials, Firstquarter 2021

10

https://netgroup.github.io/rose/

Thank you for your attention!

stefano.salsano@uniroma2.it

11

Andrea Mayer(1)

University of Rome Tor Vergata / CNIT

SRv6 in the Linux kernel

Linux Netdev 0x16

Who I am?

❖ M.Sc degree in Computer Science and PhD in Electronic Engineering at
University of Rome "Tor Vergata";

❖ Working as researcher engineer at CNIT (National Inter-University
Consortium for Telecommunications) on several projects funded by the EU;

❖ Main interests focus on Linux kernel networking stack, IPv6 Segment
Routing (SRv6), Network Function Virtualization (NFV), Virtualization,
Software Defined Networking (SDN);

❖ Developer and contributor to the SRv6 subsystem of the Linux kernel.

2

Quick agenda

❖ Quick journey through the evolution of SRv6 in the Linux kernel:
➢ SRv6 initial support (v4.10 ~ v4.18);
➢ Our contribution from v5.0 up to now;
➢ Kernel space/User space (i.e.: iproute2).

❖ What’s next?

❖ Conclusions.

3

SRv6 support in Linux kernel v4.10
(1/2)

❖ Support for SRv6 appears in Linux kernel v4.10;

❖ Implement minimal support for processing of SR-
enabled packets:
➢ Add SRH encapsulation and insertion (seg6 - LWT);
➢ segment Endpoints processing (require SRH and DA = local):

■ Advance the next segment and re-routing;
■ Egress for encap packets: remove of outer IPv6 and SRH;

➢ HMAC support.

❖ Endpoint enabled through per-netns sysctl knobs:
➢ net.ipv6.conf.default.seg6_enabled,

net.ipv6.conf.<ifname>.seg6_enabled

4

4.10

NIC
driver

prerouting

seg6
(LWT)input

forward

segment
Endpoint

processing

routing

SRH

SRv6 support in Linux kernel v4.10
(2/2)

❖ iproute2 extended to:
➢ Support for SRv6 encapsulation (T.Encaps) and insertion (T.Inserts);
➢ Set the source tunnel address;
➢ Handle the HMAC.

❖ Some examples:
➢ To encapsulate an IPv6 packet into an outer IPv6 + SRH:

$ ip ro add 2001:db8::1 encap seg6 mode encap segs fc00::1,fc00::2 dev eth0

➢ To set the SRv6 tunnel source address:
$ ip sr tunsrc set 2001:2::1

5

Dst of packets that
will be encap

encap mode Segments belonging to
the SID List

seg6
LWT

4.10

SRv6 support in Linux kernel v4.14
(1/2)

6

❖ SRv6 subsystem has been considerably improved, e.g.,:
➢ Support SR-encap of IPv4 packets and L2 ethernet frames (*) in IPv6 + SRH;

❖ Add support for advanced local segment processing (seg6local - LWT):
➢ Implement several “local behaviors” (actions) such as: SRv6 End.X, End.T, End.DX4, etc;

➢ A local behavior can be configured with different (mandatory) parameters/attributes;
Packets to be processed must require IPv6 DA != local;
■ Some behaviors do not require SRH at all!

(*) Only support ethernet frames with IPv4/IPv6 as L3 proto.

4.10 4.14

seg6
(LWT)

input seg6local
(LWT)

… forward

routing

SRv6 support in Linux kernel v4.14
(2/2)

7

❖ iproute2 extended to support advanced local segment processing:
➢ set up/destroy local behavior instances;
➢ show instantiated behaviors with all the user-provided parameters/attributes.

❖ Few examples:
➢ Instantiate the SRv6 End behavior for the given SID:

$ ip -6 ro add 2001:db8::1 encap seg6local action End dev eth0

➢ Instantiate the SRv6 End.T behavior for the given SID:
$ ip -6 ro add 2001:db8::1 encap seg6local action End.T table main dev eth0

active SID seg6local
LWT

Behavior to
be executed

attribute table, valorized with main

4.10 4.14

SRv6 support in Linux kernel v4.16

8

❖ IPv6 Segment Routing Header (SRH) support for Netfilter:
➢ Provided as a kernel module;
➢ iptables CLI integration to set matching rules.

❖ It allows matching packets based on SRH;
➢ Supported match options include:

■ Next header, Header Extension Length, Segment Left, Last Entry, Tag.

❖ It can be combined with other Netfilter extensions to design complex
filtering chains and actions:
➢ e.g., implementing SRv6 network packet loss monitoring, delay monitoring, etc.

4.10 4.164.14

SRv6 support in Linux kernel v4.18
(1/2)

9

❖ SRv6 local processing enhanced with the new End.BPF action by:
➢ A new BPF program type (BPF_PROG_TYPE_LWT_SEG6LOCAL);
➢ New bpf helpers to encap packets and deal with SR-enabled ones, e.g:

■ bpf_lwt_push_encap, bpf_lwt_seg6_store, etc.

❖ End.BPF works like the SRv6 End:
➢ SRH must be present;
➢ Advance the next segment.

❖ End.BPF provides an hook for attaching an eBPF program:
➢ It can not write directly into the packet;
➢ Only some fields of the SRH (flags, tag and TLVs) can be altered through helper functions.

4.10 4.16 4.184.14

SRv6 support in Linux kernel v4.18
(2/2)

10

❖ iproute2 extended to load&attach an eBPF program to End.BPF;

❖ A file object can contains multiple eBPF programs in different sections:
➢ Only one program can be attached to an End.BPF instance.

❖ For example:
➢ Load&attach eBPF program “prog1” contained in “foo_obj.o” for the given SID:

$ ip -6 route add 2001:db8::6 encap seg6local action End.BPF endpoint \
object foo-obj.o section prog1 dev eth0

File object
foo-obj.o

eBPF program in
section prog1

4.10 4.16 4.184.14

SRv6 support in Linux kernel v5.5 and v5.9

11

❖ Support for local delivery of decap packets in SRv6 End.DT6 (*);

❖ The Virtual Routing and Forwarding (VRF) subsystem is an enabling key for
implementing new SRv6 behaviors (**);

❖ The VRF is extended by supporting the new “Strict mode”:
➢ It imposes a one-to-one mapping between a VRF and the associated Routing Table;
➢ Network-namespace aware;
➢ It can be turned on/off by acting on the “strict_mode” sysctl knob:

■ net.vrf.strict_mode (disabled by default for legacy purposes).

(*) since kernel v5.5, (**) since kernel v5.9

4.10 4.16 4.18 5.5 5.94.14

SRv6 support in Linux kernel v5.11
(1/3)

12

❖ Local processing of SRv6 (seg6local) subjected to heavy lifting:
➢ Improved the management of behavior attributes;
➢ Added support for optional attributes used by behaviors;
➢ Added callbacks for customizing creation/destruction of behaviors.

❖ Add support for SRv6 End.DT4 behavior:
➢ It decaps inner IPv4 packets and performs lookup into a given Routing Table (RT):

■ Do not strictly require SRH.
➢ It leverages the VRF to force the routing lookup into the associated RT:

■ VRF “strict_mode” must be turned on!

❖ Enhance the SRv6 End.DT6 operating mode:
➢ Legacy mode (providing RT) or using a VRF as in the End.DT4 case.

4.10 4.16 4.18 5.5 5.9 5.114.14

SRv6 support in Linux kernel v5.11
(2/3)

13

❖ A high-level view on SRv6 End.DT4 behavior processing:

4.10 4.16 4.18 5.5 5.9 5.114.14

NIC

prerouting

routing

10.0.0.0/24 forward to dev eth_t100
… …

SID Action
VRF table (100)

fc00:21::6004 apply End.DT4 vrftable 100
… …

SID Action
localsid table (90)

seg6local
End.DT4 vrftable 100

eth_t100
(target)

vrf-100 (VRF)

IPv6
DA=fc00:21::6004 SRH IPv4 Payload IPv4 Payload

1

2

3

4

5

(rule) fc00::/16 lookup 90

k processing step

SRv6 support in Linux kernel v5.11
(3/3)

14

❖ iproute2 extended to support both SRv6 End.DT4 and End.DT6 (VRF mode);

❖ iproute2 does not require any change to support optional attributes for
SRv6 local behaviors;

❖ For example, to instantiate an SRv6 End.DT4 behavior for a given SID:
$ sysctl -wq net.vrf.strict_mode=1
$ ip link add name vrf-100 type vrf table 100
[...] set the target device of the VRF connecting with the host [...]
$ ip -6 r a 2001:db8::6b encap seg6local action End.DT4 vrftable 100 dev eth0

RT associated with
VRF vrf-100

4.10 4.16 4.18 5.5 5.9 5.114.14

SRv6 support in Linux kernel v5.13
(1/2)

15

❖ Add counters support for SRv6 local processing;

❖ For each local behavior instance they count:
➢ Total number of correctly processed packets;
➢ Total amount of traffic (in bytes) correctly processed;
➢ Total number of packets NOT correctly processed.

❖ Counters are very interesting for:
➢ Network monitoring purposes;
➢ Checking whether a behavior works as expected or not;
➢ Troubleshooting purposes.

❖ Counters can be enabled on a behavior instance during the setup phase.

4.10 4.16 4.18 5.5 5.9 5.11 5.134.14

SRv6 support in Linux kernel v5.13
(2/2)

16

❖ By extending iproute2, each SRv6 behavior instance can be configured to
make use of counters;

❖ SRv6 counters are supported for any SRv6 local behavior (seg6local) as
follows:

➢ Add a new SRv6 End behavior instance with the given SID and counters turned on:
$ ip -6 route add 2001:db8::1 encap seg6local action End count dev eth0

➢ Per-behavior counters can be shown by adding “-s” to the iproute2 CLI, e.g.:
$ ip -s -6 route show 2001:db8::1
2001:db8::1 encap seg6local action End packets 0 bytes 0 errors 0 dev eth0

count is an optional attribute

4.10 4.16 4.18 5.5 5.9 5.11 5.134.14

counters (aka statistics)

SRv6 support in Linux kernel v5.14

17

❖ Add support for SRv6 End.DT46 behavior:
➢ With End.DT4 and End.DT6 is not possible to create SRv6 tunnel carrying both IPv4 and IPv6.

❖ End.DT46 decaps both IPv4/IPv6 traffic and routes traffic using a VRF:
➢ It reuses the core implementation of End.DT4 and End.DT6 (VRF mode);
➢ The VRF “strict_mode” must be enabled.

❖ Performance tests show no degradation in performance when DT46 is used
w.r.t. End.DT4/6:
➢ End.DT46 greatly simplifies the setup and operations of SRv6 VPNs.

❖ iproute2 updated to support the new SRv6 End.DT46 behavior:
➢ similar CLI and configuration required for setting End.DT4 and End.DT6 (VRF mode).

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.144.14

SRv6 support in Linux kernel v5.15

18

❖ Add optional Netfilter hooks to SRv6 processing;

❖ Netfilter hooks useful to track (conntrack) both inner flows and outer flows.

❖ By default, Netfilter hooks for SRv6 are disabled:
➢ It can impact on performance when turned on;
➢ Sysctl (system-wide) toggle for enabling LWT tunnel netfilter hooks:

■ net.netfilter.nf_hooks_lwtunnel

➢ Disabling the nf_hooks_lwtunnel requires kernel reboot.

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.154.14

SRv6 support in Linux kernel v6.0
(1/2)

19

❖ Add support for SRv6 Headend Reduced:
➢ H.Encaps.Red reduced version of H.Encaps.
➢ H.L2Encaps.Red reduced version of H.L2Encaps.

❖ The H.(L2)Encaps.Red reduces the length of the SRH by:
➢ Excluding the first segment (SID) from the SID List carried by SRH;
➢ Pushing the excluded SID directly into the IPv6 DA.

❖ The H.(L2)Encaps.Red can avoid the SRH at all if the SRv6 policy contains
only one SID.

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.04.14

SRv6 support in Linux kernel v6.0
(2/2)

20

❖ iproute2 updated to support both H.Encaps.Red and H.L2Encaps.Red;

❖ Two new mode are available to encap seg6 in iproute2 CLI:
➢ encap.red for SRv6 H.Encaps.Red behavior;
➢ l2encap.red for SRv6 H.L2Encaps behavior.

❖ Same iproute2 CLI syntax to perform reduced encaps, for example:
➢ Perform a reduced encapsulation of an IPv4 packet into an outer IPv6 + SRH

$ ip -4 ro a 10.0.0.2 encap seg6 mode encap.red segs fc00::1,fc00::2 dev eth0

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.04.14

SID List is transparently
reduced by the Linux kernel

H.Encaps.Red

SRv6 support in Linux kernel v6.1-rc1
(1/2)

21

❖ Some SRv6 scenarios may require large number of SIDs;

❖ Reducing the size of a SID List is useful to:
➢ Minimize the impact on MTU; enable SRv6 on legacy HW with limited processing power.

❖ Kernel v6.1 introduces the NEXT-C-SID (aka uSID) [1] mechanism for SRv6:
➢ Efficient representation (compression) of the SID LIst;

■ Several SRv6 segments can be encoded within a single 128-bit SID.
➢ NEXT-C-SID mechanism relies on the “flavors” framework (RFC 8986):

■ Additional operations that can modify/extend existing behaviors.

❖ SRv6 End behavior is extended with the NEXT-C-SID flavor support.

[1] - https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.0 6.1-rc14.14

https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression

SRv6 support in Linux kernel v6.1-rc1
(2/2)

22

❖ iproute2 extended to support flavors framework;

❖ New “flavors” attribute to set up NEXT-C-SID compression on SRv6 End:
➢ Nested sub-flavors attributes are allowed to further configure the behavior;

❖ NEXT-C-SID flavor for SRv6 End behavior can be configured using optional
user-provided sub-flavors attributes:
➢ lblen, i.e.: attribute for Locator-Block length in bits (> 0 and evenly div by 8);

➢ nflen, i.e.: attribute for Locator-Node Function length in bits (> 0 and evenly div by 8).

❖ For example:
➢ $ ip -6 ro a 2001:db8::1 encap seg6local action End \

flavors next-csid lblen 48 nflen 16 dev eth0

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.0 6.1-rc14.14

flavors attribute accepts nested attributes nested attributes are optionals

What’s next?

23

❖ We are still working to:
➢ Introduce new SRv6 features into the kernel;
➢ Cooperate maintaining the SRv6 subsystem, e.g. bug fixing, performance tests, etc.

❖ (Some of) Upcoming “desidered” features will:
➢ Extend eBPF helper function to support H.Encaps.Red behavior;
➢ Extend the End.X/End.T behaviors to support NEXT-C-SID compression;
➢ Implement the PSP, USP, USD flavors (RFC 8986);
➢ Add counters support to SRv6 Headend behaviors (i.e.: seg6);
➢ Set user-provided Traffic Class, Hop Limit in the outer IPv6 header on encap;
➢ Set the tunnel source address (outer IPv6 SA) on a per-behavior basis during encap.
➢ Introduce Path tracing protocol and implementation (leveraging SRv6);
➢ Provide support for SRv6 L2 EVPN based on a new type of virtual network device, i.e.: seg6l2.

Conclusions

24

❖ SRv6 support enhanced considerably across the Linux kernel releases;
➢ We heavily contributed to add new features and fix bugs.

❖ We extended the VRF and SRv6 subsystems by adding key features, e.g.:
➢ “Strict mode” to 1:1 map between a VRF with its RT, used by SRv6 End.DT* behaviors;
➢ Optional attributes to make possible complex SRv6 behavior configurations;
➢ Support for built-in SRv6 counters made for statistics and troubleshooting purposes;

❖ Our work was/is driven by both research and real use-cases needs:
➢ Providing solution for Multi-tenant IPv4/IPv6 VPNs, e.g.: End.DT4/6/46;
➢ Avoiding SRH overhead whenever possible, e.g.: with reduced encaps;
➢ SID compression for supporting SRv6 legacy HW and reducing overhead, i.e.: NEXT-C-SID.

❖ We are very active on SRv6, if you have suggestions or new ideas, please drop us
a message!

Thank you for your attention!

andrea.mayer@uniroma2.it

25

SRv6 in SONiC
Linux Netdev 0x16

Reshma Sudarshan, Director of Applications Engineering, Intel

D A T A P L A T F O R M S G R O U P 2INTEL CONFIDENTIAL

SONiC is an open source network operating system based on Linux that runs on switches from multiple
vendors and ASICs. Microservices architecture breaks monolithic switch software into multiple
containerized components that accelerates software evolution

DASH stands for Disaggregated API for SONiC Hosts

DASH
community is developing set of APIs and object models describing
network services for the cloud, and working with all cloud
providers and enterprise hybrid clouds to develop further
functionality.

SRv6 benefits to the Operators
Challenges faced by CoSPs today

- Traditional protocols do not give CoSPs the ability to change or modify the behavior of their networks to deliver on
service level agreements (SLAs) and engineer the deterministic latency needed for user applications.
- Mobile bearer networks are all independent network domains isolated from each other.

Applications, however, require packets to traverse these network boundaries.

Solution

Segment routing for IPv6 (SRv6) is an SDN solution for source routing that provides powerful programming ability and a
flexible solution for traffic engineering and has been widely adopted as an IPv6 based SDN solution.

SRv6 creates a network domain with predefined network segments that can be set up within an IPv6 network where
segment-based traffic steering is desired.

Nov 2021 Nov 2021

Timeline
SRv6 support in SAI
SRv6 headend and Endpoint
behaviors including uSID

END, END.T, END.X, END.DT4,
END.DT6, END.DT46, uN, uA,
B6.ENCAP, ….

More SRv6
Integration with FRR

sBFD for SRv6

Path Tracing (PT)

SONiC 202111
SRv6 domain
ingress|transit|egress nodes

H.Encaps.Red

END.DT4, END.DT6, END.DT46

Anycast SID in END

Traffic steering on SID list

Nov 2021

SONiC 202212
SRv6 uSID

2023

SONiC Architecture

SRv6 support in SAI

SRv6 APIs and attributes in-line with the latest RFCs and SAI MPLS/tunnel pipeline model

SRv6 implementation in SONiC

Controller based configuration to set SID-List and
apply policy for TE in APPL_DB tables.

New Srv6Orch handles tables from APPL_DB
• SRv6_SID_LIST – creates SRv6 SID-list segment
• ROUTE_TABLE – adds route pointing to SID-list

segment
• SRV6_MY_SID – create local (my) SID entry for

END behavior action

MicroSID (uSID) support is added (New).

Route entry that is SRv6 modified and assign
higher priority to do SID and nexthop lookup in
SRv6 Orchagent

SRv6 Tables in Application DB
New table - SRv6 SID list
key = SRV6_SID_LIST_TABLE:segment_name

field = value
path = SID, ; List of SIDs

New table - Local SID to behavior mapping
key = SRV6_MY_SID_TABLE:block_len:node_len:func_len:arg_len:ipv6address

field = value
action = behavior ;behaviors defined for local SID
vrf = VRF_TABLE.key ;VRF name for END.DT46, can be empty
adj = address, ; List of adjacencies for END.X, can be empty
segment = SRv6_SID_LIST.key, ; List of segment names for END.B6.ENCAP
source = address, ; List of src addrs for encap for END.B6.ENCAP

key = ROUTE_TABLE:VRF_NAME:prefix

nexthop = prefix, ; IP addresses separated ',' (empty indicates no gateway)
intf = ifindex? PORT_TABLE.key ; zero or more separated by ',' (zero indicates no interface)
vni_label = VRF.vni ; zero or more separated by ',' (empty value for non-vxlan next-hops)
router_mac = mac_address ; zero or more remote router MAC address separated by ',’
(blackhole = BIT ; Set to 1 if this route is a blackhole (or null0)
segment = SRV6_SID_LIST.key ; New optional field. List of segment names, separated by ',’
seg_src = address ; New optional field. Source addrs for sid encap

Generic SAI Extensions

→ New programmable capabilities
→ Realization of new user scenarios
→ Enable referencing existing SAI objects
→ Brings agility and differentiation with

specialized use cases

P4Orch
● New Extensions manager in P4Orch
● A TableMap database derived from P4 Info

to generically support programming of
Extension table entries

syncd container

LEGEND

gNMI

SWSS container

LAG

Remote SDN Controller

Docker
container

Vendor ASIC DB Mapping

ASIC/STATE
DB

APPLICATION
/ STATE DB

LLDP...

Existing
module

New
module

P4Runtime

SAI Table

port
syncd

neigh
syncd VRFOrch...

BGP

P4OrchPortsOrch

SAI Extns
table

P4RT
Extension

Tables

Existing
Path (black)

New Path
(green)

New Path
(red dashed)

SAI SAI- -Extns

P4RT Fixed
Tables

Table
Definition

s DB

P4 Integrated Network Stack

SRv6 VNF - Load Balancing implementation
with GSE

Parser Decap L3
Routing

Ingress
ACL

Ingress
ACL B

Ingress
ACL C

Egress
ACLB

uf
fe

rs

Encap Deparser... ...Extension

TCP SYN Flood
mitigation

(v4/v6) 5-tuple
Exact Match ->

VRF, DestIP

(v4/v6) 5-tuple
TCAM Match ->

VRF, DestIP

L4LB tables

SRv6 in SONiC Ecosystem

Companies contributing to SRv6 in the SONiC community

→ Intel
→ Cisco
→ Alibaba
→ Microsoft
→ And others in SONiC community

Thank you

Covered Under CITA#MSFT 140000_CEthernet Products Group 13

Notices & Disclaimers
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available security updates. See backup for
configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be
claimed as the property of others.

Carmine Scarpitta(1)

University of Rome Tor Vergata / CNIT

SRv6 and FRR

Linux Netdev 0x16

Who Is This Guy?

❖ I’m Carmine Scarpitta

❖ I’m a PhD Student at the University of Rome Tor Vergata

❖ My research interests include SRv6, SDN, SD-WAN

❖ I have been working on FRR and SONiC for 7 months
➢ Developing new features related to SRv6

2

Agenda

❖ Introduction to FRR Architecture

❖ SRv6 features supported in mainline of FRR

❖ New SRv6 features that we implemented in FRR

❖ What’s next?

3

FRR Architecture

4

STATIC SHARP IS-IS OSPFBGP

ZEBRA (RIB)

KERNEL (FIB)

vtysh

Protocol daemons

Service daemon

Forwarding plane

Interactive CLI

ZAPI

Netlink Netlink

FPM

SONiC

fpmsyncd

SRv6 Support in FRR and SONiC

❖ The SRv6 development in FRR has started recently

❖ FRR supports a rich SRv6 ecosystem
➢ e.g. , SRv6 Locator, L3VPN services, SRv6 Behaviors, …

❖ The SRv6 support in FRR is across several daemons (Zebra, BGP, SHARP)

❖ We are continuously adding new SRv6 features to FRR!

❖ We are working on the integration of our SRv6 implementation in
mainline of FRR

❖ We are working on the integration of the SRv6 features in SONiC

5

SRv6 Locator (1/2)

❖ SRv6 SID Format (defined in RFC 8986)

❖ The RFC gives operators the freedom to choose the length of SRv6
Locator, Function, etc.

6

BLOCK NODE FUNCTION ARGUMENT

SRV6 LOCATOR

SRv6 Locator (2/2)

❖ Typically
➢ 1 SRv6 Locator per-node
➢ Several SRv6 SIDs allocated from the locator

7

FC00:0: 1:

100:

BLOCK NODE

FUNC ARG

LOCATOR

200:

300:

400:

FC00:0: 1:

100:

BLOCK NODE FUNC ARG

200:

300:

400:FC00:0: 1:

FC00:0: 1:

FC00:0: 1:

Support for SRv6 Locator in FRR

❖ In FRR you can configure SRv6 Locators using the vtysh shell

➢ LOC1 is the name of the locator
➢ func-bits/block-len/node-len are the lengths of the Function/Block/Node parts of the SIDs allocated

from the locator
➢ behavior usid specifies the locator as a uSID locator

❖ func-bits is already supported by the mainline implementation of FRR

❖ We have an open PR to integrate block-len and node-len in mainline FRR
➢ https://github.com/FRRouting/frr/pull/11673

❖ behavior usid is implemented on our fork of FRR
➢ https://github.com/cscarpitta/frr (branch srv6-usid) - we will open a PR to integrate it on mainline

8

router(config)# segment-routing
router(config-sr)# srv6
router(config-srv6)# locators
router(config-srv6-locators)# locator LOC1
router(config-srv6-locator)# prefix fc00:0:1::/48 func-bits 16 block-len 32 node-len 16
router(config-srv6-locator)# behavior usid

https://github.com/FRRouting/frr/pull/11673
https://github.com/cscarpitta/frr

BGP Overlay Services Based on SRv6

❖ We want to support L3VPN Services in SONiC using
➢ BGP as control-plane
➢ SRv6 as data-plane

❖ RFC 9252 extends BGP to support SRv6 services (e.g., L3VPN and EVPN)

❖ BGP is used to advertise the reachability of prefixes of a particular VPN
from an egress PE to the ingress PE nodes
➢ The egress PE signals an SRv6 Service SID
➢ The ingress PE encapsulates the payload in an outer IPv6 header where the destination

address is the SRv6 Service SID provided by the egress PE

❖ RFC 9252 introduces new TLVs and Sub-TLVs (see next slide)
➢ Attached to the BGP Update messages to carry SRv6 SID information

9

BGP Overlay Services Based on SRv6 (TLVs)

❖ The SID information is enclosed in a SRv6 L3 Service TLV

❖ SRv6 SID Information Sub-TLV defines the properties of the SID
➢ SRv6 SID Value (e.g., FC00:0:1:100::)
➢ SRv6 Endpoint Behavior codepoint (e.g., 63 for uDT4 or 62 for uDT6)

❖ SRv6 SID Structure Sub-Sub-TLV defines the SID structure
➢ Block length
➢ Node length
➢ Function length
➢ Argument length

10

BGP Overlay Services Based on SRv6 in FRR

❖ To configure a L3VPN Service in FRR, you need to configure
➢ The egress PE to advertise the L3VPN prefixes using an SRv6 SID
➢ The ingress PE to import the advertised prefixes in the appropriate VRF

❖ The SRv6 Architecture allows to support both IPv4 and IPv6 address
families using a single SID
➢ uDT46 behavior

❖ We implemented the support for uDT46 behavior

❖ We have an open PR to integrate the uDT46 behavior in the mainline FRR
➢ https://github.com/FRRouting/frr/pull/11673

11

https://github.com/FRRouting/frr/pull/11673

Source IPv6 Address for Encapsulated Packets

❖ We want a mechanism to set the source IPv6 address for the SRv6 packets

❖ In Linux, you can use iproute2 to configure a Source IPv6 address
➢ ip sr tunsrc set FC00:0:1::1
➢ This approach is specific for Linux!

❖ In FRR you can configure the src IPv6 address both in Linux and SONiC with vtysh

❖ In the mainline distribution of FRR this command is not yet supported

❖ But we have an implementation on our fork of FRR
➢ https://github.com/cscarpitta/frr (branch srv6-usid)

❖ We will integrate this functionality in the mainline of FRR

12

router(config)# segment-routing
router(config-sr)# srv6
router(config-srv6)# encapsulation
router(config-srv6-encap)# source-address fc00:0:1::1

https://github.com/cscarpitta/frr

Support for SRv6 Behaviors in STATIC

❖ STATIC is a daemon that handles the installation/deletion of static routes

❖ In FRR you can configure the SRv6 Endpoint Behaviors in FRR and SONiC with vtysh

❖ This feature is not in the mainline implementation of FRR

❖ We have an open source implementation on our fork of FRR
➢ https://github.com/cscarpitta/frr (branch srv6-usid) - we will open a PR to integrate it on mainline
➢ currently only a subset of behaviors including uDT4, uDT6, and uDT46
➢ WIP: we are implementing other behaviors

❖ We will integrate this feature in the mainline FRR!

13

router(config)# segment-routing
router(config-sr)# srv6
router(config-srv6)# explicit-sids
router(config-srv6-sids)# sid fcbb:bb00:1:f001 behavior end-dt6-usid
router(config-srv6-sid)# sharing-attributes
router(config-srv6-sid-attr)# vrf-name VRFA

https://github.com/cscarpitta/frr

SONiC Architecture

14

Exporting SRv6 Behaviors to SONiC (1/3)

❖ Routing daemons compute their best routes
and send these route to zebra through the
ZAPI

❖ zebra computes the best routes across the
routing daemons and install these routes
both in the kernel and in SONiC.

❖ fpmsyncd in SONiC listens on the FPM port
(2620)

❖ FPM periodically attempts to connect to
fpmsyncd

❖ Once the connection is up, zebra sends a
complete copy of the forwarding table to the
fpmsyncd (routes encoded in Netlink format)

15

STATIC SHARP IS-IS OSPFBGP

ZEBRA (RIB)

KERNEL (FIB)

vtysh

FPM

SONiC
fpmsyncd

Exporting SRv6 Behaviors to SONiC (2/3)

❖ FPM should be able to encode the SRv6 Behaviors in Netlink format
and push them to fpmsyncd

❖ The mainline implementation of FRR does not support encoding SRv6
Behaviors

❖ We have an open source implementation of this feature on our fork
➢ https://github.com/cscarpitta/frr (branch srv6-usid)

❖ We will integrate our implementation in the mainline FRR

16

https://github.com/cscarpitta/frr

Exporting SRv6 Behaviors to SONiC (3/3)

❖ fpmSyncd in SONiC waits for notification about route additions and deletions
➢ … also events related to SRv6 - e.g., installing/deleting SRv6 Behaviors!

❖ fpmsyncd parses the received update messages and delivers each message to the
appropriate handler
➢ SRv6-related messages are delivered to SRv6 handlers

❖ fpmsyncd publishes route changes and SRv6 behaviors changes to Redis in real time

❖ Redis propagates the changes to syncd

❖ Syncd updates the FIB

❖ The mainline SONiC does not support the SRv6 handlers to decode SRv6-related
messages

❖ We have an implementation of this feature on our fork of SONiC
➢ https://github.com/cscarpitta/sonic-swss (branch srv6-usid)

❖ We will integrate our implementation in the mainline of SONiC

17

https://github.com/cscarpitta/sonic-swss

Conclusions (1/2)

❖ The mainline distribution of FRR supports the several SRv6 features
➢ Configuring SRv6 Locators
➢ Instantiating a subset of SRv6 behaviors

❖ We implemented many additional features (available on our fork of FRR)
➢ Configuring micro-segment SRv6 Locators
➢ Setting a Source IPv6 Address for SRv6 packets
➢ Exporting L3VPN Services using BGP with a single SID
➢ Supporting more SRv6 behaviors in SHARP
➢ Introduced the support for SRv6 to STATIC
➢ Extended FPM to export SRv6 routes/behaviors to other forwarding planes (e.g., SONiC)

❖ We started integrating the new features in the FRR Mainline…
➢ … and we continue developing new features!

18

Conclusions (2/2)

❖ What’s Next?

➢ Continue integrating the features we developed in the FRR Mainline

➢ Continue the integration of SRv6 features in SONiC

➢ Support more SRv6 features in FRR
■ Support for more SRv6 Behaviors
■ Support SRv6 traffic steering

19

Thank you for your attention!

carmine.scarpitta@uniroma2.it

20

