To TLS or not?

That’'s not the question...

Pedro Tammela, Nabil Bitar, Jamal Hadi Salim

Work being done at Bloomberg

Agenda

abkrowbh-~

TLS/KTLS overview
Test Setup

Results

Debugging issues
Summary

Our work builds on previous presentations

1. TLS performance characterization on modern x86 CPUs
o Pawel Szymanski, Manasi Deval

o https://legacy.netdevconf.info/Ox14/session.html?talk-TLS-performance-characterization-on-m
odern-x86-CPUs

2. KTLS HW offload - implementation and performance gains
o Tarig Toukan, Bar Tuaf, Tal Gilboa
o https://legacy.netdevconf.info/0x14/session.html?talk-k TLS-HW-offload-implementation-and-p
erformance-gain
3. Performance study of kernel TLS handshakes

o Alexander Krizhanovsky, lvan Koveshnikov
o https://legacy.netdevconf.info/0x14/pub/papers/35/0x14-paper35-talk-paper.pdf

https://legacy.netdevconf.info/0x14/session.html?talk-kTLS-HW-offload-implementation-and-performance-gains
https://legacy.netdevconf.info/0x14/session.html?talk-kTLS-HW-offload-implementation-and-performance-gains
https://legacy.netdevconf.info/0x14/pub/papers/35/0x14-paper35-talk-paper.pdf

TLS Overview: User Space, KTLS, And KTLS offload

User Space TLS KTLS

uTLS

Application
TLS library

TLS library

Handshake and

Handshake protocol
Record protocols

User Space

Kernel Space

Socket layer Socket layer

SEES Crypto
Record Protocol Algoritm

Network Stack

(TPC/1P, Network driver etc.)

Network Stack

{TPC/IP, Network driver etc.)

See Ref[1] and Ref[2]For credit of this illustration

TLS Performance Testing Goals

e Test datapath crypto offload (record protocol) performance
e Nvidia Bluefield 2: only available options are TLS1.2 and AES 128 for kTLS offload

o Our testing is specific to those parameters
o We also tested disabling the CPU AES acceleration
o We consider a TLS record size of 16KB

e Nginx was used as it supports all 3 scenarios

e Wrkis our client for HTTPS connections

Host: SUT

VM: Worker Node
Pod Worker Node Baremetal : TG

nginx server
- One CPU core for app
processing

One CPU core for stack
processing

IP Forwarding

Dumb NIC
Intel X710
A

25G Connection

TLS Performance Testing Setup

System under test: VM with a single k8s POD running nginx server

Client: POD with wrk traffic generator
o Open two https connection
o Request files of different sizes (for each test)
[1K, 16K, 32K, 64K, 128K, 1M, 1G
o Reuse the same socket up to 1000 requests complete for each test
] Close/open again and again (as long as the 25 seconds has not expired)

e 3 testruns, each 25s, to measure
o Throughput
[| Measure transfer bytes/sec over the 25 seconds
o Transactional Testing
[| Count http requests/sec accumulated over 25s

e Request RTT latency

o How long each http request took
o Calculate the percentiles

Host: SUT

Worker Node Baremetal : TG

Dumb NIC

Intel X710

Test Setup

Virtual Machine

Value

Host Value
CPU Xeon Gold 6230R
Hyper-Threading N
Turbo Boost N
RAM 192GB 2993Mhz

Processor Host bypass
CPUs 6
RAM 16Gb
SRIOV on
RSS off
RX/TX Descriptors combined 1
rmem_max 16777216
wmem_max 16777216
rmem_default 16777216
16777216

wmem_default

4096 87380 16777216

tcp_rmem
tcp_wmem 4096 87380 16777216
tcp_mem 1638400

Hardware Setting Value
Hyper Threading Disabled
Turbo boost Disabled
CPU Power & Performance Policy | Performance

KVM CPU Affinity pinning on
GSO on
GRO on
TCP Segmentation Offload on

Test Setup

NGINX Directive Value
worker_processes 1
sendfile on
ssl_protocols TLSv1.2
ssl_ciphers AES128
ssl_conf_commands Options KTLS
keepalive_requests 1000

Program Version
Host kernel 5.15.10
Kubernetes 1.21.3
nginx 1.21.6
wrk debian/4.1.0-3build1 [epoll]
VM kernel 5.17.5
0Ss ubuntu 20.04

Reproducible Results: Network Vs Application CPU

Host: SUT

VM: Worker Node
Pod Worker Node Baremetal : TG

taS kset nginx server

- One CPU core for app.
processing

One CPU core for stack
processing

Source
POD
(wrk client)

irg bound

veth

IP Forwarding

Dumb NIC
Intel X710
A

25G Connection

Results

Transactional Testing

Host SUT

Transactional Testing: 1K files

KTLS - 1K File - Requests

A Requests/sec [Bluefield CPU (1 CPUs) [Host Network Stack CPU (1 CPUs)
Network Stack CPU (1 CPUs) [l Application (1 CPUs)

125.00% 25000

23441.25
100.00% 22431.4] 20000

19/1159:56

75.00% 15000
S A
[a
© 50.00% 1248536 10000
25.00% 5000
0.00% 0

uTLS/AESon uTLS/AESoff KkTLS SW/AES KTLS SW/AES KTLS Offloaded /
on off AES on

Dumb NIC
ntel X710

Requests/sec

Transactional Testing: 64K files

kKTLS - 64K File - Requests

A Requests/sec [Bluefield CPU (1 CPUs) [l Host Network Stack CPU (1 CPUs)
Network Stack CPU (1 CPUs) [l Application (1 CPUs)

125.00% 10000
A

100.00% —————]

8426!64)

A 7500
7609.23

127410132
75.00%

5000

CPU

50.00%

2500
25.00%

0.00%

UTLS/AESon UuTLS/AESoff KTLS SW/AES KTLS SW/AES KTLS Offloaded /
on off AES on

Requests/sec

Visualising the Transactional results

e The ideal implementation consumes the least amount of CPU while producing

the highest amount of transactions
o Transactions should always strive for full link capacity

e \We had to visualise the results in a way it's obvious which implementation has

the best ROI.
’l Z 'n T = Throughput (https req / sec)

n = throughput weight factor (set to 2)
Ci = CPU 7’ utilization (e.q.,

Z C application CPU, 10 CPU)

ROI - Requests (1/4) with up to 64KB size file

ROI - HTTP Request - Higher is Better

] Userspace TLS (uTLS)
I KTLS

|:| kTLS Offload
/ . X X X
| i | 2 8 |

0.00E+0
uTLS/ KTLSSW/ KTLS uTLS/ KTLSSW/ KTLS uTLS/ KTLSSW/ KTLS uTLS/ KTLSSW/ KTLS
AES on AES on Offloaded/ AES on AES on Offloaded/ AES on AES on Offloaded / AES on AES on Offloaded /
AES on AES on AES on AES on

6.00E+10

32K
32K
32K
64K
64K
64k

ROI - Requests (2/4) with 128KB file size

[] Userspace TLS (uTLS)

ROI - HTTP Request - Higher is Better - kTLS

[] KTLS Offload

4.00E+9

0.00E+0

uTLS / AES on KTLS SW /AES on KTLS Offloaded / AES on

ROI - Requests (3/4) with 1MB file size

[] Userspace TLS (uTLS)
B kTLS
| [] kKTLS Offload

ROI - HTTP Request - Higher is Better

3.00E+8

= =
-— -—

2.00E+8

uTLS / AES on kTLS SW / AES on KTLS Offloaded / AES on

ROI - Requests (4/4)

[] Userspace TLS (uTLS)
2 kTLS
ROI - HTTP Request - Higher is Better |:| kTLS Offload

400

300

1G
1G

200

uTLS / AES on kTLS SW /AES on kTLS Offloaded / AES on

Summary For Transactional Tests

User space TLS (UTLS) is the best implementation on short flows

KTLS starts to show promising results after 128KB file size

KTLS offload starts to show promising results after 64KB file size

The CPU consumption for KTLS offload stays relatively constant across file
sizes while number of handled requests improves in comparison to other

implementations as file size increases
o We saw a 35% reduction in CPU utilization accounted for the application in case of KTLS
offload, when compared to other implementations

CPU crypto acceleration in case of uTLS and kTLS provide value

Latency Testing

Latency: The forgotten part

e Previous Netdev conf presentations [1], [2], [3] showed similar results for
throughput as we did
o As file size increases, KTLS performs better or equal than uTLS
e None of the previous presentations discussed latency
o Latency matters!
e Reminder Latency measurement comes from wrk
o It'sthe RTT of a HTTP request

Request Latency Testing (Lower Better)

Request Latency - kTLS - 1K

B Latency 50p [Latency 75p Latency 90p [Latency 99p

500.00
400.00
300.00

200.00

Latency (usec)

224
205
100.00 125
Jﬁ . B iﬁ

0.00
uTLS / AES on KTLS SW/AES on KTLS Offloaded / AES on

Request Latency Testing (Lower Better)

Request Latency - kTLS - 16k

M Latency 50p [Latency 75p Latency 90p [Latency 99p
1,000.00
750.00
o
(3]
3
% 500.00
o
[y
(]
E 371
340
250.00
215 Py 231
156
0.00

uTLS / AES on KTLS SW/AES on KTLS Offloaded / AES on

Request Latency Testing (Lower Better)

Request Latency - kKTLS - 1G

Latency (sec)

@ Latency 50p [Latency 75p Latency 90p [Latency 99p

2.50

2.00

1.481.481

+1.90
1.20 1.23]
LIS 0.980.991.001.0
1.0 ‘
) II I

o

o

0.00
uTLS / AES on KTLS SW / AES on KTLS Offloaded / AES on

Latency Results

e \Where is this 90/99p latency coming from in KTLS Offload?

o Theory: Crypto engine setup

o Theory: Network noise

o Theory: Some obscure misconfiguration
o Theory: VM Overhead

Theory: Crypto Engine Setup

Handshake estimation:
o Disregarding tricks like Session Resumption

~ DI
~ K

D = Test duration
R = Total http requests
K = Nginx keep alive parameter

What happens if we increase K?
o Expect to see better latency
o Expect to see better throughput

| nginx (server) ” | kernel ’
T 1

| accept()

)

= ===,
Incoming connection), |
—

| setsockopt() |
(R]

|
i initial TCP options setup Iﬁ'
1

1 read()

OpenSSL TLS handshake BI; E

: write()

:| OpenSSL TLS handshake B]I

| |
! setsockopt() _'
e
1

JE]

| read()

1
HTTP GET request "), |
Bl |

| write()

|
|
|| HTTP response header Iﬁl
i

| |
| sendfile() i
f%]

|
!| HTTP response body =N
i

nginx (.server) l | ker.nel i

Handshake Impact: Throughput

Handshake Impact - Throughput - 1K File - AES on

Requests/Sec

B Requests/sec [TLS Handshakes

4,937.90
26000 23441257 2319859
4,064.64
19751.58
20000 19159.56 19166.81
16258.54)
15000
10000
5000
i 478.99
1.00 1.00
0
\000 \@“\(J’* .. N\\(J* & " ®@ A \‘\\(&
&P &2 S &F &% & \oﬂ&ﬂs
o“
S
&

KA (Keep alive)

19499.49
12485.36
775.39
3101.55
312.13
1.00
J \0“ ,\000@ & ‘\\“@
i (2
&
\006 o‘(‘\oa
2 I\

5,000.00

4,000.00

3,000.00

2,000.00

1,000.00

0.00

TLS Handshakes

Handshake Impact: Throughput

Handshake Impact - Throughput - 128K File - AES on

1,465.89
8000
R ia 5987.64

6000

o 4000
[0
]
|2}
®
[}
e
o
[0}
['4

2000

149.69
0
> >
P o
R\G \S\\,e R\

B Requests/sec [TLS Handshakes

1,455.38
7199.77
6303.49 6250.48
5821.52 5986.59
618.84
2475.34
157.59 149.66
1.00 1.00
R . e ® & \ B
S° - ’ S - g
A \© Qv o e 2%
A \‘:‘ A 60®0'6 \096 O,(\\o
g Q2 &

1,500.00

1,000.00

500.00

0.00

TLS Handshakes

Handshake Impact: Latency

Handshake Impact - Latency - 1K File - AES on

Latency (usecs)

2,500.00

2,000.00

1,500.00

1,000.00

500.00

W Latency 50p [Latency 75p

Latency 90p [Latency 99p

X TLS Handshakes

5,000.00

4,000.00

3,000.00

2,000.00

1,000.00

TLS Handshakes

Handshake Impact: Latency

Handshake Impact - Latency - 128K File - AES on

Latency (usecs)

2,500.00

2,000.00

1,500.00

1,000.00

500.00

M Latency 50p [Latency 75p

X

Latency 90p [Latency 99p

X TLS Handshakes

1,500.00

1,000.00

500.00

TLS Handshakes

KTLS offload has a handshake setup
problem!

e Clearly it influences the latency percentiles

e Quick Solution => Just run a huge keep alive constant!
o Very dependent on application and deployment
o Not really a satisfactory solution

e Hardware Offload brings a lot of savings!

o More energy efficiency
o More CPU for the application itself

Handshake Impact: Going deep with tracing

e By tracing nginx we can see what's happening under the hood
o Usually tools will collect syscall latency for convenience
e \What is the cost of the socket setup for each setup?

o perftrace’ should have the answer!
o Remember: kTLS requires an additional setsockopt setup per connection

accept()

accept()
n(—! !
| h
i
| setsockopt()]
et e
I setsockopt() | I \
T i A !| initial TCP options setup “
i || initial TCP options setup 1 i i
! | 1 read() .
| | &)
d
:<L: OpenSSL TLS handshake ‘j : 3
N ! 1 -y '
OpenSSL TLS handshake] J | write() !
I I '—>
! write() ! 1 op enSSL TLS handshake ™
> |
i || openssL TLs handshake “ .%4
| I
| | i
I oread) | : B
e
N ! i read()
HTTP GET request ' | _'<—<‘
Foe ! HTTP GET request “ |]
1 write() ! =l i
—_——
’ ' | write() |
GRS
| |
i _
it I | 1 AIRLE
| write I
LWITE: | sendfile()
| |
N |
E HTTP response body ; THTTP response body ™
¥ 1 —

H :
nginx (server) kernel nginx (server))

Handshake Impact: Going deep with tracing
KTLS:

17.884 (0.037 ms): setsockopt(fd: 3<socket:[21253011]>, level: TLS, optname: 2, optval:
Ox7ffd1b474980, optlen: 40) =0

18.005 (0.010 ms): setsockopt(fd: 3<socket:[21253011]>, level: TLS, optname: 1, optval:
Ox7ffd1b474990, optlen: 40) =0

KTLS with offload:

18.684 (3.857 ms): setsockopt(fd: 3<socket:[21233724]>, level: TLS, optname: 2, optval:
Ox7ffd1b474980, optlen: 40) =0

22.747 (1.207 ms): setsockopt(fd: 3<socket:[21233724]>, level: TLS, optname: 1, optval:
Ox7ffd1b474990, optlen: 40) =0

Handshake Impact: Going deep with tracing

e setsockopt() in kTLS offload is a direct call into the driver.
o ftrace gives us this call graph:

=> mlix5e_ktls_add

=> tls_set device_ offload rx

=> tls_setsockopt

=> sock _common_setsockopt

=> sys setsockopt

=> x64 sys_ setsockopt

=> do_syscall 64

=>entry_ SYSCALL 64 after hwframe

Handshake Impact: Going deep with tracing

e ftrace tells us the culprits lies deep in the mix5e_ktls_add_rx:
!485647.176662 | 4) nginx-1575808 | ...1. | | mlx5e ktls add rx [mlx5 core]() {
1485647.176667 | 4) nginx-1575808 | d..2. | 1.136 us | irq enter _rcu();

1485647.176669 | 4) nginx-1575808 | d.h2. | 19.062 us | __sysvec _irg work();

1485647.176688 | 4) nginx-15758068 | d.h2. | 0.826 us | irqiexit reu();

1485647.176690 | 4) nginx-1575808 | ...1. 0.824 us I kmem cache alloc trace();

1485647.176692 | 4) nginx-1575808 | ool | mlx5 ktls create key [mlx5 core]() {
1485647.178577 | 4) nginx-1575808 | 1885.080 us | }

1485647.178580 | 4) nginx-1575808 | d..1. U.503 US | 1rg encer rca();

1485647.178581 | 4) nginx-1575808 | d.hl. | 13.491 us | __sysvec _irq work();

1485647.178595 | 4) nginx-1575808 | d.hl. 0.620 us I irg exit rcu():

1485647.178597 | 4) nginx-1575808 | o I | | mlx5e rx_res tls tir create [mlx5 core]() {
1485647.180749 | 4) nginx-1575808 | | # 2151.880 us | }

1485647.180754 | 4) nginx-1575808 | d..1. 0.996 us | irg enter rcu();

1485647.180755 | 4) nginx-1575808 | d.hl. | 17.549 us | __sysvec _irqg work();

1485647.180773 | 4) nginx-1575808 | d.hl. | ©0.815 us | drg exiit rcu);

1485647.180775 | 4) nginx-1575808 | 1. | 08:471 us | __init swait queue head();

1485647.180776 | 4) nginx-1575808 | ...1. | 1.320 us | _raw_spin lock bh();

1485647.180778 | 4) nginx-1575808 | b..2. | 1.677 us | post static params [mlx5 core]();
1485647.180780 | 4) nginx-1575808 | b..2. | 0.353 us | mlx5e ktls build progress params [mlx5 core]();
1485647.180781 | 4) nginx-1575808 | b..2. | 1.042 us | _raw_spin unlock bh();

1485647.180782 | 4) nginx-1575808 | | # 4121.243 us | }

Summary

e The cost of the socket setup is much higher with

hardware offload

o Visible in the first packets of the connections which show up in the
90/99th percentile
o As the flow size increases, hardware offload becomes more viable
m Socket lifetime is longer
m Resource savings are visible and show significant potential gains
o Short flows are still problematic for either KTLS implementations

Why KTLS offload is desired?

e Reduce resource usage in host machines

o Offload to crypto ASICs whenever supported by underlying hardware
o Free up CPU resources for other tasks

e Leverage the sendfile() syscall for transparent encryption when possible
o Avoid memory copies to user space
o “Transparent” encryption when combined with KTLS

AN]
Throughput CPU Usage
Free CPU time Energy consumption

What's Next for KTLS?

e Can we rethink the kTLS offload in order to expand beyond elephant flows?
o Challenge: Minimize the cost of the crypto engine setup
m Results directly in more throughput and less latency as shown in the tests
m TLS Handshakes in the kernel?
e Presented in Netdev 0x14

e KTLS is still not competitive with uTLS on short flows
o Perhaps upper layer protocol was not the best approach?
m Connection setup cost is still visible in the tests
o More code optimizations are needed?
m Some interesting patches popping up in the mailing list

Questions

Backup slides

Implementations

User Space TLS

wrk (client)

| TLS Handshake in userspace \:

f Call

| TLS Handshake in userspace |
1

V2

wrk (client)

LY
| encrypted HTTP GET/1G |
| |
| |
Connection stays open until response completes or test duration expires 5: :
I I
' e
| |
| |
| encrypted Response :
I I
| |
| |
| |

Kernel TLS (KTLS)

wrk (client) nginx (server)

TLS Handshake in userspace

TLS Handshake in userspac

I
|
|
.
Cal
|
- €
- 1
|

Pushes TLS credentials to Linux
|

encrypted HTTP GET /1G

Connection stays open until response completes or test duration expires B.

| kTLS decrypts every RX packet, in TLS record chunks (up to 16Kb) B.

|
:| Requires 16Kb buffer to optimize to in-place decryption b‘

-
-~

|
encrypted Response :
[}

E| Uses sendfile() + kTLS encrypts in TLS record chunks at the socket layer B.

wrk (client) nginx (server)

KTLS + Offload

wrk (client) nginx (server)

TLS Handshake in userspace

.
>

_ TLS Handshake in userspace
<

Pushes TLS credentials to Linux and sets up TLS device offload

Potential TOCTOU, decryption is done at SW kTLS. b‘

1
|
|
r
|
|
r
|
|
|
|
I
|
|
|
I
|
T

encrypted HTTP GET /1G

Connection stays open until response completes or test duration expires B.:

NIC decrypts every pa‘cket and marks it decrypted. B.

| Decryption errors fallback to SW kTLS decryption. B‘

encrypted HTTP Response

I

I

I

I

I

&
<

I

I

I

I

| Based on the socket, driver tags the TCP packet to be encrypted. B‘

NIC encrypts packet. Errors at the NIC level will drop the packet. b.i

wrk (client) nginx (server)

Transactional tests

Host SUT

Transactional Testing: 16K files

Dumb NiC
ntel X710

KTLS - 16K File - Requests

A Requests/sec [Bluefield CPU (1 CPUs) [Host Network Stack CPU (1 CPUs)
Network Stack CPU (1 CPUs) [l Application (1 CPUs)

125.00% 12500
A A
11971.65 .. - = 1171479
100.00% ' 10000
9524.05

75.00% : 7500
(0]
Y
> 2
5 ¢
50.00% 5000 =
o

25.00% 2500

0.00% 0

uTLS/AESon UuTLS/AESooff KTLS SW/AES KTLS SW/AES KTLS Offloaded /
on off AES on

Host SUT

Transactional Testing: 128K files

kKTLS - 128K file - Requests

A Requests/sec [Bluefield CPU (1 CPUs) [l Host Network Stack CPU (1 CPUs)
Network Stack CPU (1 CPUs) [l Application (1 CPUs)

125.00% 8000

5987.64 5986.59

A“ A 6000

100.00%

75.00%
4000

CPU

50.00%

2000
25.00%

0.00%

UTLS/AESon UuTLS/AESoff KkTLS SW/AES KTLS SW/AES KTLS Offloaded /
on off AES on

Requests/sec

Dumb NIC
ntel X710

Latency tests

Request Latency Testing (Lower Better)

Request Latency - kTLS - 32k

@ Latency 50p [Latency 75p Latency 90p [Latency 99p
1,250.00
1,000.00
9 750.00
(2]
=
>
[8)
& 500.00
[\]
- 458

250.00 350
241
0.00

uTLS / AES on KTLS SW / AES on KTLS Offloaded / AES on

Request Latency Testing (Lower Better)

Request Latency - kTLS - 64k

@ Latency 50p [Latency 75p Latency 90p [Latency 99p
1,250.00
1,000.00
9 750.00
(2]
=
ey
& 500.00
[\]
-

519
438
250.00 302 293
II 279
i - ﬁi

0.00
uTLS / AES on KTLS SW / AES on KTLS Offloaded / AES on

Request Latency Testing (Lower Better)

Request Latency - kTLS - 128k

@ Latency 50p [Latency 75p Latency 90p [Latency 99p
1,250.00
1,000.00
9 750.00
(2]
=
>
[8)
& 500.00
[\]
-
386 397
250.00
0.00
uTLS / AES on kTLS SW / AES on kKTLS Offloaded / AES on

Request Latency Testing (Lower Better)

Request Latency - kKTLS - 1M

@ Latency 50p [Latency 75p Latency 90p [Latency 99p

3.00

1.972.02

Latency (msec)

2.00 1.79
1.531.56
1.6 — 11
) II
0.00

uTLS / AES on KTLS SW / AES on KTLS Offloaded / AES on

Network Noise

KTLS Network Noise - 1K File - Requests

CPU (%)

A Requests/sec [l Bluefield CPU (1 CPUs) [Host Network Stack CPU (1 CPUSs) Network Stack CPU (1 CPUs) [l Application (1 CPUs)
150 20000
16906.51
15000
100 1222333
10000
5000

Requests/sec

KTLS Network Noise - Latency - 1K File - AES on

B Latency50p [Latency75p | Latency90p [Latency 99p

8.00

6.00
~ 4.00
8
@
[%2]
E
3
| =
I3}
©
i

2.00

0.00

e ro“|° o W g,“l“ o
'g'cf"e 0‘63‘0 O‘OQ a‘"’e 0«@‘0 O‘°Q6 Rt
\ © S° \ © S
S Py X\ W % (g Nia
N A3 \(5\,5
QN

KTLS Network Noise - 16K File - Requests
A Requests/sec [Bluefield CPU (1 CPUs) [Host Network Stack CPU (1 CPUSs)

150

8986.07
A 8561.04

100

CPU (%)

50

Network Stack CPU (1 CPUSs)

7151.39
A

B Application (1 CPUs)

10000

7500

5000

2500

Requests/sec

KTLS Network Noise - Latency - 16K File - AES on

B Latency50p [Latency75p | Latency90p [Latency 99p

8
6
— 4
8
[0}
(%2}
E
>
o
c
L
©
)
2
0
N4 o o N ol o
% (\e‘o (o‘?‘J = 60‘0 ‘096
S~ e) 0 \D" e 5 o Q7
N BB ™ 3 - g Fig o
) A \4_‘\\’6

KTLS Network Noise - 1M File - Requests

A Requests/sec [Bluefield CPU (1 CPUs) [l Host Network Stack CPU (1 CPUs) Network Stack CPU (1 CPUs) [l Application (1 CPUs)
200 800
e 719:97
705.8 ’
o
150 600
45785 457.85
100 400
§ & Y. <
D
o
O
200

Requests/sec

Handshake Latency tests

Handshake Impact: Latency

Handshake Impact - Latency - 16K File - AES on

Latency (usecs)

2,500.00

2,000.00

1,500.00

1,000.00

500.00

W Latency 50p [Latency 75p

Latency 90p [Latency 99p

X TLS Handshakes

4,000.00

3,000.00

2,000.00

1,000.00

TLS Handshakes

Handshake Impact: Latency

Handshake Impact - Latency - 32K File - AES on

Latency (usecs)

2,500.00

2,000.00

1,500.00

1,000.00

500.00

M Latency 50p [Latency 75p

Latency 90p [Latency 99p

X TLS Handshakes

3,000.00

2,000.00

1,000.00

TLS Handshakes

Handshake Impact: Latency

Handshake Impact - Latency - 64K File

Latency (usecs)

2,500.00

2,000.00

1,500.00

1,000.00

500.00

W Latency 50p [Latency 75p

Latency 90p [Latency 99p

X TLS Handshakes

2,000.00

1,500.00

1,000.00

500.00

TLS Handshakes

