
To TLS or not?
That’s not the question…

Pedro Tammela, Nabil Bitar, Jamal Hadi Salim

Work being done at Bloomberg

Agenda

1. TLS/kTLS overview
2. Test Setup
3. Results
4. Debugging issues
5. Summary

Our work builds on previous presentations

1. TLS performance characterization on modern x86 CPUs
○ Pawel Szymanski, Manasi Deval
○ https://legacy.netdevconf.info/0x14/session.html?talk-TLS-performance-characterization-on-m

odern-x86-CPUs
2. kTLS HW offload - implementation and performance gains

○ Tariq Toukan, Bar Tuaf, Tal Gilboa
○ https://legacy.netdevconf.info/0x14/session.html?talk-kTLS-HW-offload-implementation-and-p

erformance-gain
3. Performance study of kernel TLS handshakes

○ Alexander Krizhanovsky, Ivan Koveshnikov
○ https://legacy.netdevconf.info/0x14/pub/papers/35/0x14-paper35-talk-paper.pdf

https://legacy.netdevconf.info/0x14/session.html?talk-kTLS-HW-offload-implementation-and-performance-gains
https://legacy.netdevconf.info/0x14/session.html?talk-kTLS-HW-offload-implementation-and-performance-gains
https://legacy.netdevconf.info/0x14/pub/papers/35/0x14-paper35-talk-paper.pdf

TLS Overview: User Space, KTLS, And KTLS offload

See Ref[1] and Ref[2]For credit of this illustration

KTLS offload
Crypto Algorithm

uTLS

TLS Performance Testing Goals
● Test datapath crypto offload (record protocol) performance
● Nvidia Bluefield 2: only available options are TLS1.2 and AES 128 for kTLS offload

○ Our testing is specific to those parameters
○ We also tested disabling the CPU AES acceleration
○ We consider a TLS record size of 16KB

● Nginx was used as it supports all 3 scenarios
● Wrk is our client for HTTPS connections

TLS Performance Testing Setup
● System under test: VM with a single k8s POD running nginx server
● Client: POD with wrk traffic generator

○ Open two https connection
○ Request files of different sizes (for each test)

■ 1K, 16K, 32K, 64K, 128K, 1M, 1G
○ Reuse the same socket up to 1000 requests complete for each test

■ Close/open again and again (as long as the 25 seconds has not expired)

● 3 test runs, each 25s, to measure
○ Throughput

■ Measure transfer bytes/sec over the 25 seconds
○ Transactional Testing

■ Count http requests/sec accumulated over 25s
● Request RTT latency

○ How long each http request took
○ Calculate the percentiles

Test Setup

Virtual Machine Value
Processor Host bypass

CPUs 6
RAM 16Gb

SRIOV on
RSS off

RX/TX Descriptors combined 1
rmem_max 16777216
wmem_max 16777216

rmem_default 16777216
wmem_default 16777216

tcp_rmem 4096 87380 16777216
tcp_wmem 4096 87380 16777216
tcp_mem 1638400

Host Value
CPU Xeon Gold 6230R

Hyper-Threading N
Turbo Boost N

RAM 192GB 2993Mhz

Hardware Setting Value
Hyper Threading Disabled

Turbo boost Disabled
CPU Power & Performance Policy Performance

KVM CPU Affinity pinning on
GSO on
GRO on

TCP Segmentation Offload on

Test Setup

Program Version
Host kernel 5.15.10
Kubernetes 1.21.3

nginx 1.21.6
wrk debian/4.1.0-3build1 [epoll]

VM kernel 5.17.5
OS ubuntu 20.04

NGINX Directive Value
worker_processes 1

sendfile on
ssl_protocols TLSv1.2
ssl_ciphers AES128

ssl_conf_commands Options KTLS
keepalive_requests 1000

Reproducible Results: Network Vs Application CPU

irq bound

taskset

Results

Transactional Testing

Transactional Testing: 1K files

Transactional Testing: 64K files

Visualising the Transactional results

● The ideal implementation consumes the least amount of CPU while producing
the highest amount of transactions

○ Transactions should always strive for full link capacity
● We had to visualise the results in a way it’s obvious which implementation has

the best ROI.

T = Throughput (https req / sec)
n = throughput weight factor (set to 2)
Ci = CPU “i” utilization (e.g.,
application CPU, IO CPU)

ROI - Requests (1/4) with up to 64KB size file

Userspace TLS (uTLS)
kTLS
kTLS Offload

ROI - Requests (2/4) with 128KB file size
Userspace TLS (uTLS)
kTLS
kTLS Offload

ROI - Requests (3/4) with 1MB file size
Userspace TLS (uTLS)
kTLS
kTLS Offload

ROI - Requests (4/4)
Userspace TLS (uTLS)
kTLS
kTLS Offload

Summary For Transactional Tests

● User space TLS (uTLS) is the best implementation on short flows
● kTLS starts to show promising results after 128KB file size
● kTLS offload starts to show promising results after 64KB file size
● The CPU consumption for kTLS offload stays relatively constant across file

sizes while number of handled requests improves in comparison to other
implementations as file size increases

○ We saw a 35% reduction in CPU utilization accounted for the application in case of kTLS
offload, when compared to other implementations

● CPU crypto acceleration in case of uTLS and kTLS provide value

Latency Testing

Latency: The forgotten part

● Previous Netdev conf presentations [1], [2], [3] showed similar results for
throughput as we did

○ As file size increases, kTLS performs better or equal than uTLS
● None of the previous presentations discussed latency

○ Latency matters!
● Reminder Latency measurement comes from wrk

○ It’s the RTT of a HTTP request

Request Latency Testing (Lower Better)

Request Latency Testing (Lower Better)

Request Latency Testing (Lower Better)

Latency Results

● Where is this 90/99p latency coming from in kTLS Offload?
○ Theory: Crypto engine setup
○ Theory: Network noise
○ Theory: Some obscure misconfiguration
○ Theory: VM Overhead

Theory: Crypto Engine Setup

● Handshake estimation:
○ Disregarding tricks like Session Resumption

● What happens if we increase K?
○ Expect to see better latency
○ Expect to see better throughput

D = Test duration
R = Total http requests
K = Nginx keep alive parameter

Handshake Impact: Throughput

KA (Keep alive)

Handshake Impact: Throughput

Handshake Impact: Latency

Handshake Impact: Latency

kTLS offload has a handshake setup
 problem!
● Clearly it influences the latency percentiles
● Quick Solution => Just run a huge keep alive constant!

○ Very dependent on application and deployment
○ Not really a satisfactory solution

● Hardware Offload brings a lot of savings!
○ More energy efficiency
○ More CPU for the application itself

Handshake Impact: Going deep with tracing
● By tracing nginx we can see what’s happening under the hood

○ Usually tools will collect syscall latency for convenience
● What is the cost of the socket setup for each setup?

○ `perf trace` should have the answer!
○ Remember: kTLS requires an additional setsockopt setup per connection

Handshake Impact: Going deep with tracing

…
18.684 (3.857 ms): setsockopt(fd: 3<socket:[21233724]>, level: TLS, optname: 2, optval:

0x7ffd1b474980, optlen: 40) = 0
…
22.747 (1.207 ms): setsockopt(fd: 3<socket:[21233724]>, level: TLS, optname: 1, optval:

0x7ffd1b474990, optlen: 40) = 0
…

…
17.884 (0.037 ms): setsockopt(fd: 3<socket:[21253011]>, level: TLS, optname: 2, optval:

0x7ffd1b474980, optlen: 40) = 0
…
18.005 (0.010 ms): setsockopt(fd: 3<socket:[21253011]>, level: TLS, optname: 1, optval:

0x7ffd1b474990, optlen: 40) = 0
…

kTLS with offload:

kTLS:

Handshake Impact: Going deep with tracing
● setsockopt() in kTLS offload is a direct call into the driver.

○ ftrace gives us this call graph:

 => mlx5e_ktls_add
 => tls_set_device_offload_rx
 => tls_setsockopt
 => sock_common_setsockopt
 => __sys_setsockopt
 => __x64_sys_setsockopt
 => do_syscall_64
 => entry_SYSCALL_64_after_hwframe

Handshake Impact: Going deep with tracing
● `ftrace` tells us the culprits lies deep in the mlx5e_ktls_add_rx:

Summary

● The cost of the socket setup is much higher with
hardware offload
○ Visible in the first packets of the connections which show up in the

90/99th percentile
○ As the flow size increases, hardware offload becomes more viable

■ Socket lifetime is longer
■ Resource savings are visible and show significant potential gains

○ Short flows are still problematic for either kTLS implementations

Why kTLS offload is desired?

● Reduce resource usage in host machines
○ Offload to crypto ASICs whenever supported by underlying hardware
○ Free up CPU resources for other tasks

● Leverage the sendfile() syscall for transparent encryption when possible
○ Avoid memory copies to user space
○ “Transparent” encryption when combined with kTLS

Throughput
Free CPU time

CPU Usage
Energy consumption

What’s Next for kTLS?

● Can we rethink the kTLS offload in order to expand beyond elephant flows?
○ Challenge: Minimize the cost of the crypto engine setup

■ Results directly in more throughput and less latency as shown in the tests
■ TLS Handshakes in the kernel?

● Presented in Netdev 0x14
● kTLS is still not competitive with uTLS on short flows

○ Perhaps upper layer protocol was not the best approach?
■ Connection setup cost is still visible in the tests

○ More code optimizations are needed?
■ Some interesting patches popping up in the mailing list

Questions

Backup slides

Implementations

User Space TLS

Kernel TLS (KTLS)

KTLS + Offload

Transactional tests

Transactional Testing: 16K files

Transactional Testing: 128K files

Latency tests

Request Latency Testing (Lower Better)

Request Latency Testing (Lower Better)

Request Latency Testing (Lower Better)

Request Latency Testing (Lower Better)

Network Noise

Handshake Latency tests

Handshake Impact: Latency

Handshake Impact: Latency

Handshake Impact: Latency

