
Pushing OpenVPN down the stack:
Data Channel Offload

Antonio Quartulli

OpenVPN, Inc.
www.openvpn.net

October 28th, 2022
Netdev 0x16 - Lisbon

1 / 22



About me

Hi! My name is Antonio Quartulli

Open Source enthusiast and developer since ever

First kernel contributions to batman-adv a bit more than 10 years
ago: wireless mesh routing protocol

Later also to cfg/mac80211: IBSS (ad-hoc) mode, AP mode

Started hacking on OpenVPN around 6 years ago

2 / 22



OpenVPN what?

Creates and manages a VPN: peer-to-peer or client/server mode

Been around for 20 years (originally developed by James Yonan)

Multi platform support (Linux, Windows, macOS, Android, AIX,
FreeBSD, OpenBSD, DragonBSD, ...)

Allows various authentication methods: certificates, user/password,
2FA, ...

Supports linking against OpenSSL, LibreSSL, mbedTLS and wolfSSL

Swiss army knife for network admins

3 / 22



Problematic aspects

Legacy code

Fully implemented in userspace

Relies on the ‘tun’ device driver

Single threaded

Performance is not on par with current connectivity rates, but tweaking
the userspace code has proven to be hard.

4 / 22



Problematic aspects 2

OpenVPN multiplexes two different streams across a connection to a
remote endpoint:

Control Channel: auth, key exchange, param negotiation, ...

Data Channel: user (encrypted) traffic

Data Channel traffic has to cross the kernelspace/userspace
boundary introducing an important performance penalty

5 / 22



Problematic aspects 2

OpenVPN multiplexes two different streams across a connection to a
remote endpoint:

Control Channel: auth, key exchange, param negotiation, ...

Data Channel: user (encrypted) traffic

Data Channel traffic has to cross the kernelspace/userspace
boundary introducing an important performance penalty

5 / 22



Data Channel flow

6 / 22



Solution: Data Channel with DCO

How about moving the whole Data Channel handling to kernelspace?
OpenVPN Data Channel Offload (DCO)

7 / 22



Solution: Data Channel with DCO

How about moving the whole Data Channel handling to kernelspace?
OpenVPN Data Channel Offload (DCO)

7 / 22



What is OpenVPN DCO?

A virtual device driver in the Linux kernel that implements the
OpenVPN Data Channel

Encryption/decryption via Crypto API: AES-GCM and
ChaCha20Poly1305 supported, but can be easily extended

Configuration via NetLink (new GENL family: ovpn)

Interface handling (creation/destruction) via RTNL in v0.1, changed
to GENL in v0.2 (WIP)

Routing uses the system (main) routing table

Supports TCP and UDP at the transport layer

8 / 22



And the Control Channel?

Still handled in userspace as it was before: all famous OpenVPN bells
and whistles stay out of the kernel.

After establishing a connection the socket is passed to DCO. How are
control messages delivered to userspace?

v0.1:
Control Channel messages are detected and passed to userspace via
NetLink.
Viceversa, Control Channel messages from userspace are also passed to
DCO via NetLink and then sent out.

v0.2 (WIP):
After taking ownership of the socket, DCO simply ignores Control Channel
messages and let them flow “as usual”. Userspace reads/writes
from/to the socket like before.

9 / 22



And the Control Channel?

Still handled in userspace as it was before: all famous OpenVPN bells
and whistles stay out of the kernel.

After establishing a connection the socket is passed to DCO. How are
control messages delivered to userspace?

v0.1:
Control Channel messages are detected and passed to userspace via
NetLink.
Viceversa, Control Channel messages from userspace are also passed to
DCO via NetLink and then sent out.

v0.2 (WIP):
After taking ownership of the socket, DCO simply ignores Control Channel
messages and let them flow “as usual”. Userspace reads/writes
from/to the socket like before.

9 / 22



And the Control Channel?

Still handled in userspace as it was before: all famous OpenVPN bells
and whistles stay out of the kernel.

After establishing a connection the socket is passed to DCO. How are
control messages delivered to userspace?

v0.1:
Control Channel messages are detected and passed to userspace via
NetLink.
Viceversa, Control Channel messages from userspace are also passed to
DCO via NetLink and then sent out.

v0.2 (WIP):
After taking ownership of the socket, DCO simply ignores Control Channel
messages and let them flow “as usual”. Userspace reads/writes
from/to the socket like before.

9 / 22



NetLink API v0.2 (WIP)

Interface creation/destruction:
OVPN CMD {NEW,DEL} IFACE

Peer management:
OVPN CMD {NEW,SET,GET,DEL} PEER

Key management:
OVPN CMD {NEW,DEL} KEY and OVPN CMD SWAP KEYS

If the process that created the interface disappears, the interface and
related state is destroyed.

Userspace maintains its own state of the tunnel (peers, keys status) and
uses the NetLink API to synchronyze with DCO.

10 / 22



NetLink events

Peer deletion events (OVPN CMD DEL PEER) are sent from kernelspace
to userspace to inform OpenVPN that a peer has disappeared: due to
transport error, timeout, user request or shutdown.

We could add more multicast events, but we don’t have clear use cases at
the moment (i.e. OVPN CMD NEW PEER)

11 / 22



Crypto

Implemented using the kernel Crypto API

AEAD: AES-GCM, ChaCha20Poly1305

Each peer can use a different cipher

12 / 22



Transport

UDP: implemented using udp tunnel

TCP: implemented by changing the socket CBs (similar to kTLS)

13 / 22



RX path

Packets coming from the network are queued in a ptr-ring.
The crypto worker is then in charge of picking them one by one and:

1 decrypt

2 decapsulate

3 deliver to the device (using NAPI) or lookup routing table

4 possibly send the packet over the network

14 / 22



TX path

Packets entering the DCO device are queued in a ptr-ring.
The crypto worker is then in charge of picking them one by one and:

1 encapsulate

2 encrypt

3 lookup routing table

4 send the packet over the network

15 / 22



Routing

An OpenVPN DCO interface can be configured in 2 modes:

Peer to Peer (P2P) - aka “dumb tunnel”

Peer to MultiPeer (P2MP) aka SERVER

In P2MP/Server mode DCO maintains a specific mapping:

peer VPN IP (v4 or v6) ≫ peer object

Static size: 4k entries.

16 / 22



Routing

An OpenVPN DCO interface can be configured in 2 modes:

Peer to Peer (P2P) - aka “dumb tunnel”

Peer to MultiPeer (P2MP) aka SERVER

In P2MP/Server mode DCO maintains a specific mapping:

peer VPN IP (v4 or v6) ≫ peer object

Static size: 4k entries.

16 / 22



Routing 2

What if the destination is behind the VPN client?

10.18.0.0/20 via 10.231.203.1 dev dco0

Destination IP is looked up in the system routing table:

entry found ≫ the gateway becomes our destination

NO entry found ≫ no change in destination

The destination IP resulting from the above process is looked up in the
DCO mapping and a peer is selected

17 / 22



Routing 2

What if the destination is behind the VPN client?

10.18.0.0/20 via 10.231.203.1 dev dco0

Destination IP is looked up in the system routing table:

entry found ≫ the gateway becomes our destination

NO entry found ≫ no change in destination

The destination IP resulting from the above process is looked up in the
DCO mapping and a peer is selected

17 / 22



Routing 2

What if the destination is behind the VPN client?

10.18.0.0/20 via 10.231.203.1 dev dco0

Destination IP is looked up in the system routing table:

entry found ≫ the gateway becomes our destination

NO entry found ≫ no change in destination

The destination IP resulting from the above process is looked up in the
DCO mapping and a peer is selected

17 / 22



BYOV (Bring Your Own VPN)

OpenVPN DCO does not care about the userspace software.

As long as it is properly configured via NetLink it will run and do its job.
(just remember to renew the keys every now and then)

Any userspace application can use DCO to build its own VPN.

18 / 22



Links

OpenVPN DCO Repository: https://github.com/OpenVPN/ovpn-dco
It can be used with OpenVPN2, master branch (soon to be v2.6)
There is an OpenWRT feed for both the above.

Also supported by the OpenVPN3-Linux client

19 / 22



Performance

Test: iperf between two Ubuntu 22.04 VMs
Host: AMD Ryzen Threadripper 3970X CPU

Test Throughput
Direct 16.1 Gbits/sec
GRE 4.74 Gbits/sec
OpenVPN (no DCO) 713 Mbits/sec
OpenVPN (with DCO) 3.95 Gbits/sec

20 / 22



Next steps

get merged upstream (“v0.1” is already on netdev ml)

get faster!

explore options for HW/NIC offload

focus testing on embedded devices (i.e. small ARM based routers)

improve concurrency

21 / 22



Thank you

Thank you for your attention
Questions?

22 / 22


	Introduction
	Unfolding OpenVPN DCO

