
Netdev 0x16

IDPF
Infrastructure Datapath Function
Team Intel

2

What :
• An Open Industry-standard developed by Intel & Google “IDPF” –

Infrastructure Data Path Function for PCIe

• High-Performance Data Path
• Ethernet & RDMA* capable
• Broad O/S Ecosystem support
• NIC, bare metal, VMs & containerized usages
• Composed in any manner desired, SR-IOV, SIOV or fully/partially emulated devices
• Presented to the O/S as a physical Function (PF) or a virtual function (VF) PCIe

device, as needed
• Container dedicated N/W Interfaces (Container Dedicated Queues CDQ)
• Capability-negotiated & extensible
• Can support non-native IDPF hardware
• Supports Live Migration

* Feature to be added after Base V1.0 features

3

• Need for high performance feature rich Generic Network Interface
as current generic Interface (virtio 0.95/1.1) does not scale very
well for high performance.

• Have a HW optimized PCIE footprint: small and just for fast path
registers.

• RDMA support

• Advanced features for the Cloud

Why:

4

Virtio 0.95/1.0 (split queue , out of order) Virtio 1.1 (compact queue , out of order) IDPF (split queue , out of order)

TX
PCIE accesses by the
device

Submission
•Read DBL from host memory - once in a batch or few batches
Read avail ring – once in a batch.
•Read desc ring – once in packet
•Read net_hdr – once in a packet
•Read header/payload…

Latency - 2 extra reads (avail + net hdr) comparing to IDPF
addition extra read once in a while for the DBL from host memory

Prepended Net_her is 14B long which creates unaligned access.
Completion (2B)
Write completion ring – once in batch

Submission

•Read avail ring – once in a batch.
•Read desc ring – once in batch
•Read net_hdr – once in a packet
•Read header/payload…

Latency - 1 extra reads (net hdr) comparing to IDPF

Prepended Net_her is 14B long which creates
unaligned access.
Completion (16B)

Write completion ring – once in batch

Submission

•Read avail ring – once in a batch.
•Read desc ring – once in batch
•Read net_hdr – once in a packet
•Read header/payload…

Completion (4B)
Write completion ring – once in batch

RX
PCIE accesses by the
device

Submission
•Read avail ring – once in a batch.
•Read desc ring – once in packet

Latency - 1 extra reads (avail) comparing to IDPF

Completion
Write net_hdr – once in a packet
Write used ring – once in batch
Prepended Net_her is 14B long which creates unaligned access.

Submission
•Read avail ring – once in a batch.
•Read desc ring – once in batch

Latency - Same as IDPF

Completion
Write net_hdr – once in a packet
Write used ring – once in batch
Prepended Net_her is 14B long which creates

unaligned access.

Submission
•Read desc ring – once in batch

Completion
Write used ring – once in batch

PCIE Fast path virtio/IDPF comparison

5

How:

• A proposed TC @ Oasis
• https://lists.oasis-open.org/archives/oasis-charter-

discuss/202210/msg00000.html

• Make IDPF an open Industry-standard (Spec, Driver, SW Backend, LM support)
• Host Interface,
• Device Behavior,
• Setup and configuration flows
• A single community driver to go along with the Interface and support the devices

https://lists.oasis-open.org/archives/oasis-charter-discuss/202210/msg00000.html

6

Why IDPF : Network Equivalent to NVMe

Virtio-net
• Backwards Compatible w/

existing VMs

Virtio-blk, Virtio-scsi
• Backwards Compatible w/

existing VMs

IDPF
• Offers higher

performance
• RDMA*

NVMe
• Offers higher performance
• NVMe controller feature set

like Namespaces

● Standard Host Interface for Networking

─ High Performance, Feature-rich NW device interface

─ Standardized Physical & Virtualized Device Types

─ Supports VMs, bare metal & containers

✓ Container Dedicated NW Interfaces/Queues

● Supports VM Live Migration & Localhost Socket

● Supports PCI Hot Plug

─ Uses semantics from KVM

● Software and hardware backends

─ Can support non-native IDPF hardware w/ acceleration

● Implementation Independent Networking + RDMA*

─ RDMA* Transport Independent (Determined by the implementation)

● Optimized Descriptor Format

─ Capable of Over 200Mpps, 200Gbps using the Linux kernel driver

─ Hardware validated stateless offloads (TSO, CSUM, RSS, RSC, SO_TXTIME)

● Compatibility & Capability Testing as part of ipdk.io

6* Feature to be added after Base V1.0 features

7

IDPF: Infrastructure Data Path Function

Data Path Function
to Hosts & Guests

Retains Feature Set &
Validation Across OSes

of Foundational NICs

D
a

ta
 P

a
th

IPU Card

3 Separate
Functions

IDPF

IPU SDK

IPU Mgmt

NIC

Controlled By
a CPU as a
Peripheral

D
a

ta
P

a
th

P
a

c
k

e
t

P
ro

c
.

L
in

e
S

id
e

To Apps

To SDN

To Mgmt

Monolithic
NIC Driver

Data Path

Pkt Proc

Line Side Independently
Operated

Infrastructure
Device

D
a

ta
 P

a
th

To Apps

To Mgmt

IPU Card

To SDN
To Mgmt

3 Separate
Functions

Data Path

IPU SDK

IPU Mgmt

Which May Connect to
3 Different Entities

Peripheral
Device

Infrastructure

Device

Infrastructure Device w/IDPF

7

8

SINGLE HOST NIC

Where Can IDPF Run?

gemu

IPDK Apps

• Insert devices into VMs

• Sockets in/out of VM apps/containers

• Direct attached devices (drives,

NICs, Accel)

Software Hypervisor

Software Virtual Switch

Data Path: Supportable from all hosts, guests

Main & IPU CPUs using IDPF

Line Side: Physical Ethernet Links

Host: CDQ, SRIOV, Guests can have CDQs

Physical NIC

VMHost

idevIDPF

Data Path

SINGLE HOST NIC

• Insert devices into VMs

• Sockets in/out of VM apps/containers

• Direct attached devices (drives,

NICs, Accel)

Software Hypervisor

Software Virtual Switch

Data Path: Supportable from all hosts, guests

Main & IPU CPUs using IDPF

Host can be physical IDPF or

composed virtual device (eg virtio)

Line Side: Physical Ethernet Links

Line Side Proxy (Dotted): Used in IPU

Host: CDQ, CMS Hotplug

Bare Metal Hosting SINGLE HOST NIC

• Insert devices into VMs

• Sockets in/out of VM apps/containers

• Direct attached devices (drives,

NICs, Accel)

Software Hypervisor

Software Virtual Switch

Data Path: Supportable from all hosts, guests

Main & IPU CPUs using IDPF

Guest uses an emulated IDPF

accelerated with Host IDPF devices

Line Side: Physical Ethernet Links

Line Side Proxy (Dotted): Used in IPU

Host: Guests can have CDQs

VM Hosting

VMVM

gemu

IPDK Apps

CPUHost

idevIDPF

MCC

IDPF

SDK

Data Path

IDPF

Virt (opt)

IDPF

VM

gemu

IPDK Apps

CPU

Host

idevIDPF

MCC

IDPF

SDK

Data Path

IDPF

Guest

IDPFIPU IPU

* “MCC” – Management Control Complex – System Management, Monitoring, Manageability, etc.
8

9

IDPF Feature Set

Core Features (All OSes)

• TX/RX on Multiple Queues

• Stateless offloads:

• CSUM, TSO, RSS

• Jumbo frames

• Locally Admin. MAC Address

• PXE Boot

• Capability Negotiation

Linux Specific Features

● Line Side Proxy

● AF_XDP

● RSC

● VLAN Add/Strip

● RDMA*

● Header Split

● Earliest Departure Time (EDT)

● Inline Ipsec

● PTP

Broad OS Support

● DPDK 0x1452 (PF), 0x145c (VF)

✓ 0X1453 Runs same PMD as IDPF,
plus MMIO for IPU SDK

● Linux: 0x1452, 0x145c

● ESX : 0x1452

Planned

● ESXio

● Windows

● CPFL

9* Feature to be added after Base V1.0 features

10

Infrastructure Datapath
Function Driver

11

IDPF : How is it different from iavf

• iavf
• Intel’s Adaptive Virtual Function driver for Foundational NICs
• VF resources are managed by the PF driver
• Uses Virtchnl 1.x API over a control channel between VF and PF for resource

configuration

• idpf
• Vendor Neutral Infrastrastructure Datapath Function driver for

IPUs/DPUs/FNICs
• Acts as a driver for PF/VF instances exposed to the host
• Host PF/VF driver resources are managed by the Control Plane running on the

device
• New Control channel between the driver and the device using Virtchnl 2.0 API for

capability learning, negotiation and resource configuration

12

IDPF – What is New

• Granular and Negotiated Capabilities
• Allows the Control Plane to expose the capabilities based on device

features and configured policy for the instance.
• Checksum, Segmentation, RSS, HW GRO, Header Split etc
• Number of Vports, Queues, Interrupt Vectors

• Learn device register offsets, descriptor formats
• New TX/RX Flows to support

• Split Queue Model (RX, RX-Buffer, TX, TX-Completion)
• Large number of RX queues with reduced host memory footprint
• Single writer for each queue (SW or HW)
• Buffer Queue Groups (large and small buffer queues)

• Per Flow QoS
• Out of Order TX Completions
• Early Departure Time Support

• Receive Segment Coalescing (HW GRO)

13

Driver Initialization Sequence

• Get Version

• Get Capabilities

• Allocate Vectors

• Create Vport(s)

• Configure TX Queues

• Configure RX Queues

• Map Queues to Vectors

• Configure RSS

• Enable Queues

• Enable Vport

14

IDPF
driver

Control
Queue

Device

Create vport

idpf_send_create_vport_
msg

idpf_send_mb_ms
g

Process the
request

Send the response

Process
mailbox

message

wakeup
thread

wait_event_timeo
ut

Receive
mailbox

message
error
path

Mailbox
interrupt

success

failure

IDPF and Device Control Plane interaction

continue with
create vport

15

Driver flow to enable RSC (HW GRO) feature

Enable RSC:

1. Driver requests RSC capability to the control plane

2. Set ‘NETIF_F_GRO_HW’ in netdev features if the capability is

enabled

Update queue configuration:

1. User enables ‘rx-gro-hw’ using ethtool

2. Call back into the driver ‘ndo_set_features’

3. Initiate a soft reset

• Update the RX queue context to enable RSC

Ethtool
‘rx_gro_hw’

enable

ndo_set_features

idpf_initiate_soft_re
set

idpf_vport_stop

opcodes sent to Control Plane
VIRTCHNL2_OP_DISABLE_VPORT
VIRTCHNL2_OP_DISABLE_QUEUE

S
VIRTCHNL2_OP_UNMAP_QUEUE_

VECTOR
idpf_vport_open

opcodes sent to Control Plane
VIRTCHNL2_OP_CONFIG_TX_QU

EUES
VIRTCHNL2_OP_CONFIG_RX_QU

EUES
VIRTCHNL2_OP_MAP_QUEUE_VE

CTOR
VIRTCHNL2_OP_ENABLE_QUEUE

S
VIRTCHNL2_OP_ENABLE_VPORT

16

Processing the RSC (HW GRO) packet

• Device uses large buffers (4K) to coalesce packets

• Max coalesced payload size is 64K (16 buffers)

• Reports RSC segment length in the descriptor

• Driver updates the skb

• NAPI_GRO_CB(skb)->count = rsc_segments;

• skb_shinfo(skb)->gso_size = rsc_payload_len;

• skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4/V6;

• skb_reset_network_header(skb);

• skb_set_transport_header(skb, sizeof(struct iphdr/ipv6hdr));

• tcp_v4/v6_check

• tcp_gro_complete(skb)

17

Host Management Agent
Netdev 0x16

18

Agenda

• What is Host Management Agent?

• Why we need it?

• How does it enable config path?

• Sample flows
✓Basic flow – Create a vport

✓Adv flow - Traffic shaper and EDT

19

What is HMA

• A component of the device control
plane

• Owned by infrastructure provider

• User mode or kernel mode

• Opens up communication channel
with host functions

• Implementation of abstract virtchnl
APIs

• Resource manager

• Configures scheduler to ensure
fairness/qos

HMA

IDPF Driver

Physical Function ADI/subfunction Virtual Function

Mailbox queue Mailbox queue

Mailbox queue

Host

Device

Abstraction Layers

HW blocks for queues, offloads, packet processing engine

Ring buffers in RAM

Data queues

Linux NW Stack
Control Path Data Path

20

Why we need it?

• Enables the split between control path and data path

• Separate channel allows smaller BAR space for host functions
➢Each queue uses the following registers: qlen, head, tail, bah & bal

• Client-Server model enables central management of policies
➢Loaded from filesystem and downloaded from cloud agents during init
➢Allows provisioning VMs differently
➢Fine grain capabilities, negotiable by host drivers
➢Flexible control of resource distribution

• Promotes reuse of host driver for PF/VF/ADI

• Host Driver reuse across multiple silicons/vendors

• ODMs/OEMs can provide deployment specific implementation

21

HMA initialization
1. Driver waits for the function to become

ready

2. VFIO ioctls to retrieve device/region
information

3. Store region details

4. Map the bar regions to process address
space

5. User virtual address mapped to the bar of
underlying device

6. Initialize the parent mbx ring

7. Device specific allocation for queues

8. Allocated queue numbers

9. Map the queue as mailbox in known location

10. Configure the parameters of the queue

11. Release all the functions from reset

12. Request HW to release function

13. Bring the function out of reset

14. Build the default mailbox

15. Exchange of config path messages

16. Processing of requests from driver

22

Basic flow - Create vport

• Common flow across PF/VF/subdev/SIOV instances
• Small memory footprint to acquire/configure resources

23

• Reference for EDT and Traffic Shaping:

https://legacy.netdevconf.info/0x12/news.html?keynote-van-
jacobson-evolving-from-afap-teaching-nics-about-time

Packet Pacing/ Traffic Shaping

https://legacy.netdevconf.info/0x12/news.html?keynote-van-jacobson-evolving-from-afap-teaching-nics-about-time

24

Advanced flow: Traffic Shaper and EDT
• Traffic Shaper (TS) implements egress traffic shaping and can delay packet transmission in

order to provide shaping.

• TS can buffer packet headers, metadata and associated scatter/gather lists (SGLs) in packet
Header Storage implemented in memory.

• EDT support can be HW offloaded as TS can hold data transmission until departure time (Tx
timestamp in skb) has reached.

• Since device holds data transmission and transmits when timestamp expire, order of packet
descriptor fetch completed may be different than packet data fetch is completed. So, device
needs to support out of order completion for packet data.

• To support out-of-order, split queue model is introduced in device, where Tx queues are used to
pass buffers from SW to HW, while Tx completion queues are used to pass completion from HW
to SW.

• Completion queue gets 2 completion notifications, one for descriptor fetch completion and
other one for data fetch completion

• Early descriptor fetch notification enables SW to reuse Tx descriptor queue slot and write a new
packet descriptor to Tx queue.

• Timestamp in completion can be used to provide feedback to Networking stack or Shaping SW.

• Shaping SW or congestion control algorithm running on Host OS puts EDT timestamp in packet.

25

26

27

28

• Device will sync its clock
with
GrandMaster/External
world

• SW running on Device will
have write control

• Host will sync system
clock with Device clock

• Host will have only RD
access to Device clock

• VMs will rely on
Hypervisor/Qemu API to
sync with Host clock

PTP Device Detail

Host
Sysclk

Device
Clk

Grand
Master

VM
sysclk

Device

Host

VM

ptp4l

phc2sy
s

RW

RO

Hyp/Qem
u

29

• Only Status register access
to host

• Kernel API:

• Gettime64
• SHTIME, SHTIME_L and

SHTIME_H

• Getcrosststamp
• PTM(Precision Time

Measurement) support
required

• ART_L and ART_H

• SHTIME, SHTIME_L,
SHTIME_H

PTP Device Detail

30

An IDPF User space Driver

• Over VFIO

• DPDK based
• Polling mode

• Core affinity

• Efficient memory management

• Platform optimization

31

Device user space access by VFIO

• ioctl fds: container, iommu group, device

• Steps:
/* Set IOMMU type according to system*/

container_fd= open("/dev/vfio/vfio", O_RDWR);

ioctl(container_fd, VFIO_SET_IOMMU, type_id);

/* Get iommu group N according PCI device addr and add it to container */

group_fd= open("/dev/vfio/N");

ioctl(group_fd, VFIO_GROUP_SET_CONTAINER, &container_fd);

/* DMA Mapping*/

ioctl(container_fd, VFIO_IOMMU_MAP_DMA, &dma_map);

/* map BAR to user space */

dev_fd = ioctl(group_fd, VFIO_GROUP_GET_DEVICE_FD, dev_addr);

ioctl(dev_fd, VFIO_DEVICE_GET_REGION_INFO, ®_info);

addr = mmap(NULL, reg_info.size,

PROT_WRITE | PROT_READ, MAP_SHARED,

dev_fd, reg_info.offset);

32

IDPF driver

• BAR access: mmapped base + fixed offset

• DMA: DPDK mempool management

• Virtchnl message
• Mailbox setup and recv/send as DMA ring

• timer based polling for virtchnl message handling

• Fast Path ring and RX/TX func
• DMA ring setup on demand

• TAIL update: mmapped base + offset from virtchnl resp

• RX/TX in burst in polling mode

Document completed August 17th, 2022

Testing completed Aug 10th, 2022

NEX NSWE NPS PRC DPDK Team

Intel® IPU/MEV DPDK
Performance Report

34

Notices and Disclaimers

Performance varies by use, configuration and other factors. Learn more at
www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and
may not reflect all publicly available updates. See configuration details in this
report. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

See configuration details in this report.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of
Intel Corporation or its subsidiaries. Other names and brands may be claimed as the
property of others.

35

System under Test (SUT) Configuration

Platform: Supermicro X12DAi-N6
Processor: 2x Intel® Xeon® Platinum 8380 Processor (2.3GHz, 40

cores, 120M LLC Cache)
RAM: 128GB DDR4, 3200 MT/s
BIOS version: 1.1a

BIOS Settings:
Default except the following:
Processor Configuration -> Hyper-Threading -> Enabled for
Throughput/Disabled for Latency
Power and Performance -> CPU Power and Perf Policy -> Performance
Power and Performance -> Workload Configuration -> I/O Sensitive
Advanced > Power & Performance -> CPU C State Control > Package C-State =
C0/C1 State
Advanced > Power & Performance -> CPU C State Control > C1E=Disabled

Configuration

SUT Setup

Platform
Supermicro X12DAi-N6

Nodes 1

Sockets 2

CPU

Intel® Xeon® Platinum
8380 Processor

2.3GHz

Cores/socket,
Threads/socket 40/80

Microcode 0xd0002c1

HT On

Turbo On

Power management Disabled

BIOS version 1.1a

System DDR Mem
Config: slots / cap /
speed

4 slots / 32GB / 3200

Total Memory/Node
(DDR, DCPMM)

128 GB

PCH

OS Ubuntu 20.04.4 LTS
Version 5.13.0-41-generic

MEV B0 NRB card:
CI: MEV IMC MEV-HW-B0-CI-ts.release.1627

Date 08/16/2022

Grub Setting: default_hugepagesz=1G hugepagesz=1G hugepages=24
console=ttyS0,115200n8 ignore_loglevel iommu=pt intel_iommu=on

36

DPDK Throughput (Xeon Host) Test Bed

Throughput Test:
Card: MEV B0 NRB card
CI: MEV IMC MEV-HW-B0-CI-ts.release.1627
Packet Generator: IXIA® 200G
DPDK PMD: idpf (internal version)
DPDK app: testpmd, iofwd
DPDK app: run on Xeon Host
DPDK scalar path: normal data path with no
vectorization optimization. CPU freq is 3.0GHz
DPDK AVX512 path: optimized data path with
AVX512 vectorization. CPU freq is 2.9GHz

37

Testing Configuration
DPDK Commands on Xeon:
• avx512-single-queue: ./build/app/dpdk-testpmd -l 1,2-2 -n 8 -a 31:00.0,representor=0,rx_single=1,tx_single=1 --force-max-

simd-bitwidth=512 -- -i -a --txq=1 --rxq=1 --nb-cores=1
• avx512-split-queue: ./build/app/dpdk-testpmd -l 1,2-2 -n 8 -a 31:00.0,representor=0 --force-max-simd-bitwidth=512 -- -i -a -

-txq=1 --rxq=1 --nb-cores=1
• scalar-single-queue: ./build/app/dpdk-testpmd -l 1,2-2 -n 8 -a 31:00.0,representor=0,rx_single=1,tx_single=1 --force-max-

simd-bitwidth=64 -- -i -a --txq=1 --rxq=1 --nb-cores=1
• scalar-split-queue: ./build/app/dpdk-testpmd -l 1,2-2 -n 8 -a 31:00.0,representor=0 --force-max-simd-bitwidth=64 -- -i -a --

txq=1 --rxq=1 --nb-cores=1

Note: above is single core commands, multiple core and multiple queue commands just changed core/queue setting.

Traffic Generator Configuration:
• Transmit rate: 100% of line rate
• Packet: any mac/ fixed dst ip, random src ip/udp

Test Case Naming:
• avx512-single-queue: use AVX512 data path with legacy queue to benchmark throughput on cores.
• avx512-split-queue: use AVX512 data path with split queue to benchmark throughput on cores.
• scalar-single-queue: use scalar data path with legacy queue to benchmark throughput on cores.
• scalar-split-queue: use scalar data path with split queue to benchmark throughput on cores.
• 200Gb line rate: 200GbE line rate in theory.

38

Multiple core Performance
avx512-single-queue

• Up to 200Mpps.

H
ig

h
e

r
is

 b
e

tt
e

r

See configuration details in this report. Results may vary.”

39

Multiple core Performance
avx512-split-queue

• Up to 190Mpps.

H
ig

h
e

r
is

 b
e

tt
e

r

See configuration details in this report. Results may vary.”

Netdev 0x16

IDPF backend
Miao Li, Chenbo Xia

41

• IDPF: a vendor neutral device interface that provides a single
network interface for hosts, containers and guests

• Emulated device of IDPF (IDPF backend) : a vendor-agnostic
software emulated device to provide IDPF compatible layout
• Simulation of new hardware features

• Deployment on multi-vendor environment

Device Emulation of IDPF

42

VM

IDPF drv

QEMU
VFIO Obj

Vfio UAPI Syscall

VM

IDPF drv

VFIO Obj

Vfio-user Client

Device Emulation of IDPF

Vfio-user Server

IDPF control plane

IDPF data plane

DPDK

SW (vSwitch)

Hardware Platform
IDPF Device

Hardware(vSwitch)

Physical Device

MAC MAC

vfio-user protocol: allow a
device emulation in a
separate process out of
QEMU

IDPF backend

43

Vfio-user Protocol

1010101
10101011010101

10101011010101
1010101

…

struct vfio_device_info

flags
argsz

num_regions
num_irqs

…

…

…

struct vfio_irq_info

flags
argsz

index
count

…

…
…

struct vfio_region_info

flags
argsz

index

offset

cap_offset
size

…

VFIO_USER_DEVICE_GET_INFO

VFIO_USER_DEVICE_GET_REGION_INFO

VFIO_USER_DEVICE_GET_IRQ_INFO

client server

VFIO_USER_DEVICE_SET_IRQS

VFIO_USER_REGION_WRITE

VFIO_USER_DMA_MAP/UNMAP

VFIO_USER_DMA_READ

VFIO_USER_DMA_WRITE

VFIO_USER_REGION_READ

c
o

n
fig

a
c

c
e

s
s

 d
e

v
ic

e
D

M
A

Region 2

Region 3

Region 0

Region 1

…

vfio-user Device

• VFIO primitive

• UNIX socket

cap_offset

44

IDPF control plane: Objects

struct idpf_emudev {

struct rte_emudev *edev;

struct idpf_emu_vfio_user *vfio;

struct rte_idpf_emu_notify_ops *ops;

struct rte_idpf_emu_mem *mem;

struct idpf_emu_intr *intr;

struct idpf_emu_adminQ adq[RTE_IDPF_EMU_ADMINQ_NUM];

struct idpf_emu_lanQ *lanq;

…

}

struct rte_emudev {

…

uint16_t dev_id;

struct emu_dev_info dev_info;

const struct emu_dev_ops *dev_ops;

void *priv_data;

…

} __rte_cache_aligned;

IDPF control plane objects
• Regions: device layout

• Queues: address/size + doorbell +
interrupt

• Memory table: DMA mapping table

Regions

…

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

Q
u

e
u

e

…

Memory table

IDPF Control Plane

45

• For application
• Lifecycle management

• Register notify callback

• For data plane
• Register notify callback

• Region read/write

• Queue and queue notify scheme setup

• DMA table setup

int idpf_emu_dev_start(…);
void idpf_emu_dev_stop(…);
int idpf_emu_dev_configure(…);
int idpf_emu_dev_close(…);

int idpf_emu_subs_ev(…);
int idpf_emu_unsubs_ev(…);

int idpf_emu_get_queue_info(…);
int idpf_emu_get_irq_info(…);
int idpf_emu_get_db_info(…);

int idpf_emu_get_mem_table(…);

int idpf_emu_get_attr(…);

L
ife

c
y

c
le

N

o
tify

R

e
g

io
n

Q
u

e
u

e
D

M
A

};

struct rte_emudev_ops emu_idpf_ops{

IDPF control plane: Ops

46

struct idpfbe_adapter {

struct rte_emudev *emu_dev;

uint16_t edev_id;

struct rte_emudev_info dev_info;

struct rte_idpf_emu_mem *mem_table;

struct idpfbe_controlq_info cq_info;

struct virtchnl2_version_info virtchnl_version;

struct idpfbe_vport **vports;

…

};

IDPF data plane objects
• Adapter: global information

• Vport: ethdev

• Queues:
• Single queue mode: rx queue + tx queue

• Split queue mode: rx queue + tx queue + rx buffer queue + tx completed queue

Q
u

e
u

e

Q
u

e
u

e

…

IDPFBE adapter

IDPFBE vport

…

Q
u

e
u

e

Q
u

e
u

e

…

IDPFBE vport

IDPF data plane: Objects

47

For application

int idpfbe_dev_start(…);
int idpfbe_dev_stop(…);
int idpfbe_dev_configure(…);
int idpfbe_dev_close(…);

int idpfbe_dev_rx_queue_setup(…);
int idpfbe_dev_tx_queue_setup(…);
void idpfbe_dev_rx_queue_release(…);
void idpfbe_dev_tx_queue_release(…);
void idpfbe_dev_rxq_info_get (…);
void idpfbe_dev_txq_info_get (…);

int idpfbe_dev_link_update (…);

L
ife

c
y

c
le

Q

u
e

u
e

L
in

k

};

struct eth_dev_ops idpfbe_eth_dev_ops {

For IDPF control plane

IDPF data plane: Ops

int idpfbe_new_device(…);
void idpfbe_destroy_device(…);
int idpfbe_update_device(…);
int idpfbe_reset_device(…);

};

struct rte_idpf_emu_notify_ops idpfbe_notify_ops{

int idpfbe_lock_dp (…);

D
e

v
ic

e

L
o

c
k

48

