
XDP offload using Nanotube

Neil Turton

Stephan Diestelhorst

Kieran Mansley

Kimon Karras

Rip Sohan

Thomas Calvert

Andres Arcia Lopez

Pranav Choukse

Steven Pope

2 |

[Public]

XDP offload benefits

Give performance back to the application

• Reduce CPU usage

• Reduce memory/cache bandwidth usage

Target use cases

• Packet filtering (e.g., Firewall/DOS filter)

• Port redirection (e.g., Cluster load balancer)

• RX queue redirection (e.g., Host load balancer)

Use eBPF for compatibility

• Easy to program

• Existing programs

3 |

[Public]

What is an FPGA SmartNIC?

FPGA SmartNIC

Network port

Network port

HostPackets DMA

FPGA

Reconfigurable

Partitions

Packets

Packets

PCIe

XDP

XDP

4 |

[Public]

Compiling the program to FPGA logic

Stage 1

Packet

Read

User

code

Map A Map B

Stage 2

User

code

Stage 3

User

code

Packet

Write
Packets PacketsPackets Packets

Program

state

Program

state
Return

code

5 |

[Public]

Nanotube compilation flow

C source

code
LLVM-IR

Generated

HLS C++

Generated

Verilog

FPGA

Bitfile

EBPF ELF

clang Nanotube Vitis™ HLS Vivado™

Hash
Installed

Bitfile

6 |

[Public]

Processing packet words

W
o
rd

 0

W
o
rd

 1

W
o
rd

 2

S
ta

te

7 |

[Public]

Processing packet words

W
o
rd

 0

W
o
rd

 1

W
o
rd

 2

S
ta

te

8 |

[Public]

Processing packet words

W
o
rd

 0

W
o
rd

 1

W
o
rd

 2

S
ta

te

9 |

[Public]

Processing packet words

W
o
rd

 0

W
o
rd

 1

W
o
rd

 2

S
ta

te

10 |

[Public]

Processing packet words

W
o
rd

 0

W
o
rd

 1

W
o
rd

 2

S
ta

te

11 |

[Public]

Processing packet words

W
o
rd

 0

W
o
rd

 1

W
o
rd

 2

S
ta

te

12 |

[Public]

Processing packet words

W
o
rd

 0

W
o
rd

 1

W
o
rd

 2

S
ta

te

13 |

[Public]

Comparisons with a CPU/NPU based approach

Pros

• Processes many packets in parallel

• Deterministic performance

• Compute resources adapt to the program

• No instruction fetch logic

• No instruction cache

• No branch prediction logic

• No load balancer logic

• No branch penalty

• No load imbalance

Cons

• No instruction cache or branches

• Rarely used code paths occupy FPGA space

• JIT compilation is not feasible

• Uses vendor-specific tools

14 |

[Public]

Nanotube passes

Ebpf2nt - Converts eBPF helper calls into Nanotube API calls

Mem2req - Converts pointer accesses to read/write requests

Lower - Add functions for handling packet metadata

Inline - Inline functions from the previous step

Platform - Adjust packet offsets to account for metadata

Control capsule - Add code to handle control packets

Optreq - Combine similar requests

Converge - Makes Nanotube API calls unconditional

Pipeline - Breaks the pipeline into stages at Nanotube API call sites

Link_taps - Add functions to access packets and maps

Inline_opt - Inline functions from the previous step

HLS printer - Produces HLS C++ output

15 |

[Public]

The ebpf2nt pass

int ip_tunnel(struct xdp_md *ctx)

{

 char *data = (char*)(uint64_t)(ctx->data);

 char *end = (char*)(uint64_t)(ctx->data_end);

 [...]

}

int ip_tunnel_nt(struct nanotube_context *nt_ctx,

 struct nanotube_packet *packet)

{

 char *packet_data = nanotube_packet_data(packet);

 char *packet_end = nanotube_packet_end(packet);

 [...]

}

16 |

[Public]

The mem2req pass

int ip_tunnel_nt(struct nanotube_context *nt_ctx,

 struct nanotube_packet *packet)

{

 uint8_t *packet_data = nanotube_packet_data(packet);

 uint8_t *packet_end = nanotube_packet_end(packet);

 if (nanotube_packet_bounded_length(packet,14) < 14)

 return NANOTUBE_PACKET_DROP;

 uint16_t ether_type = *(uint16_t*)(packet_data+12);

 [...]

}

int ip_tunnel_nt(struct nanotube_context *nt_ctx,

 struct nanotube_packet *packet)

{

 if (nanotube_packet_bounded_length(packet,14) < 14)

 return NANOTUBE_PACKET_DROP;

 uint8_t buffer[2];

 nanotube_packet_read(packet, buffer, 12, 2);

 uint16_t ether_type = *(uint16_t*)buffer;

 [...]

}

17 |

[Public]

The converge pass

Op X

NOP

Op Y

18 |

[Public]

The pipeline pass

19 |

[Public]

Net driver interface

Loading a program

• Create the maps

• Load the BPF byte-code and associate with the maps

• Attach the program to the XDP hardware offload hook

Accessing map entries

• Lookup

• Update

• Delete

20 |

[Public]

Offloading a program - initial state

21 |

[Public]

Offloading a program - created maps

22 |

[Public]

Offloading a program - loaded program

23 |

[Public]

Offloading a program - attached program

24 |

[Public]

Map accesses from the net driver

Request Response

25 |

[Public]

Map access for a network packet

Request Response

26 |

[Public]

Map access for a control packet

Request Response

27 |

[Public]

Current Status

• Actively being developed

• Working proof of concept compiler

• Can perform the required structural transformations

• Tested with the Katran load balancer from Meta

• Expect to achieve line rate on 100Gbps Ethernet

• Tested on Alveo™ SN1022 and Alveo™ X3522 SmartNICs

• Very basic map implementation - max 10 entry array/hash maps

• Net driver changes have not been started

28 |

[Public]

Getting involved

GitHub repository:

 https://github.com/Xilinx/nanotube

Contact details:

 Neil Turton <neil.turton@amd.com>

Stephan Diestelhorst <stephan.diestelhorst@amd.com>

In person:

Ed Cree <edward.cree@amd.com>

29 |

[Public]

Copyright and disclaimer
 ©2023 Advanced Micro Devices, Inc. All rights reserved.

 AMD, the AMD Arrow logo, Alveo, Vitis, Vivado and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this

publication are for identification purposes only and may be trademarks of their respective companies.

 The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate releases, for many reasons, including but not limited to product and roadmap

changes, component and motherboard version changes, new model and/or product differences between differing manufacturers, software changes, BIOS

flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD

assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes

from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

 THIS INFORMATION IS PROVIDED 'AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND

ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM

THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Slide 1: XDP offload using Nanotube
	Slide 2: XDP offload benefits
	Slide 3: What is an FPGA SmartNIC?
	Slide 4: Compiling the program to FPGA logic
	Slide 5: Nanotube compilation flow
	Slide 6: Processing packet words
	Slide 7: Processing packet words
	Slide 8: Processing packet words
	Slide 9: Processing packet words
	Slide 10: Processing packet words
	Slide 11: Processing packet words
	Slide 12: Processing packet words
	Slide 13: Comparisons with a CPU/NPU based approach
	Slide 14: Nanotube passes
	Slide 15: The ebpf2nt pass
	Slide 16: The mem2req pass
	Slide 17: The converge pass
	Slide 18: The pipeline pass
	Slide 19: Net driver interface
	Slide 20: Offloading a program - initial state
	Slide 21: Offloading a program - created maps
	Slide 22: Offloading a program - loaded program
	Slide 23: Offloading a program - attached program
	Slide 24: Map accesses from the net driver
	Slide 25: Map access for a network packet
	Slide 26: Map access for a control packet
	Slide 27: Current Status
	Slide 28: Getting involved
	Slide 29: Copyright and disclaimer
	Slide 30

