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Abstract
Emerging network access architectures and technologies offer a
rich array of network services that could greatly benefit end users.
In  practice,  realizing  these  benefits  has  proven  difficult.  The
problem is a lack of coordination between applications, the host
OS, and the network infrastructure to provide end-to-end services.
Firewall and Service Tickets (FAST) is a solution that facilitates
coordination among the various players in communications. The
basic idea is that applications signal the network for the services
they want applied to packets. This signal is encoded in the form
of a “ticket” that indicates the network services that the network
applies to packets. Applications request tickets from a ticket agent
in the network for the desired services, issued tickets are attached
to  packets,  and  tickets  are  processed  by  network  elements  to
provide  the  requested  services  for  each  packet.  FAST enables
hosts  and  the  network  to  work  together to  solve  end  user
problems.
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 Introduction
Firewall and Service Tickets (FAST) [1] is a facility to allow an
application to signal to the network requests for admission and
services for a packet. A ticket is data attached to a packet by the
source host that is inspected and processed by intermediate nodes
in  a  network.  Tickets  express  a  grant  or  right  for  packets  to
traverse  a  network  or  have  services  applied.  FAST  facilitates
coordination among applications, hosts OSes, and network nodes
for  the  purposes  of  providing  rich  and  fine  grained  network
services for the benefit of users. Heretofore, hosts and networks
haven’t  really  worked  together  to  solve  users  problems,  and
current solutions for differentiated services and QoS tend to be
limiting and restrictive.

The core idea of FAST is that hosts signal the network for the
services  to  be  applied  on  a  per  packet  basis.  Signals  are
information attached to packets that contain requests for service.
In FAST,  signals are encoded in tickets. Tickets are data attached
to  packets  in  Hop-by-Hop  options.  A  ticket  encapsulates  the
granted services in a concise form. An application requests tickets
for  admission  or  services  from  a  ticket  agent  in  their  local
network. The agent issues tickets to the application which in turn
attaches these to its packets. In the forwarding path, intermediate
network nodes interpret tickets and apply requested services.

Alternative approaches
This section considers some current techniques and proposals for
signaling the network for services.

Stateful  firewalls  and  proxies  are  the  predominantly  deployed
techniques to  control  access  to  a  network and  map packets  to
services. They have caused a number of problems:

• They require parsing over transport layer headers .

• They  are  limited  to  work  only  with  a  handful  of
protocols.

• They break  multi-homing and multi-path.

• They  break  end-to-end  security.  For  instance,  NAT
breaks the TCP authentication option.

• They are single points of failure and can be bottlenecks.

• Application  characteristics  need  to  be  inferred  from
packets which can be imprecise or incorrect.

PLUS (Path Layer UDP Substrate) [2] proposed a UDP based
protocol to allow applications to  explicitly  signal  a  rich set  of
characteristics  and  service  requirements  to  the  network.  PLUS
had a number of drawbacks:

• It  requires UDP, and wouldn’t work with TCP.

• Intermediate nodes parse payloads based on matching
port numbers to applications risking misinterpretation.

• PLUS included stateful  flow tracking  in  the  network
which  leads  to  problems  similar  to  those  of  stateful
firewalls.

• PLUS could leak sensitive application information.

Segment routing [3] is a recently defined technique that proposes
using an IPv6 routing header to source route packets through a
network. This allows “network programming” where packets can
visit various nodes towards the destination, each of which may
apply  some  Network  Function  Virtualization  (NFV).  Segment
routing as a form of network signaling has several drawbacks:

• Segment  routing  is  intended  to  be  confined  to  a
segment routing domain, not for use over the Internet.

• The  protocol  is  verbose.  Each  SID  is  sixteen  bytes
which adds up to considerable overhead.

• The  segment  list  is  plain  text  that  sensitive  internal
information may  be leaked.

• Segment routing only conveys routing for the forward
path of the packet and not routing for the return path.



Both IPv4 and IPv6 have specified a field in the IP header for
signaling quality of service (QoS) to the network. In IPv4 this
was referred to as the Type of Service (TOS), and in IPv6 it is
called Traffic Class. These fields have been overloaded in time to
hold  differentiated  services  (diff-serv)  values.  Differentiated
services  provides  an  IP  layer  means  to  classify  and  manage
traffic,  however  it  is  lacking  in  richness  of  expression  and  a
ubiquitous  interface  that  allows  applications  to  request  service
with any granularity. Diff-serv is useful in closed networks where
all parties can be trusted, but a general Internet diff-serv lacks
security and uniformity in how it’s being set to be useful.

Some  network  devices  perform Deep  Packet  Inspection  (DPI)
into the application data to classify packets to determine whether
to admit packets or what services to apply. For instance, HTTP is
commonly  parsed  to  determine  URL,  content  type,  and  other
application  related  information.  DPI  is  only  effective  with  the
application layer protocols that a device is programmed to parse.
More  importantly,  application  level  DPI  is  being  effectively
obsoleted in the network due the pervasive use of Transport Layer
Security (TLS).

Architecture of FAST
FAST allows network providers to offer custom network services
to their users. In particular, FAST does not endeavor to create a
global  infrastructure  across  the  Internet  to  provide  or  manage
network  services.  This  is  motivated  by  the  common  dumbbell
topology of end to end communications over the  Internet. In the
dumbbell  topology,  illustrated in Figure 1,  two communicating
end hosts connect to the Internet via local provider networks and
provider  networks  connect  to  transit  networks to  communicate
across the Internet.

Within each provider network of the dumbbell topology, network
services  may  be  provided  on  behalf  of  the  users  in  the  local
network. Referring to Figure 1, Provider A may provide services
and service agreements for users in its network including User 1
and User 2; and likewise, Provider B can provide services to users
in its network including User 3. Transit networks don't typically
provide user  specific  services  or  service differentiation,  that  is
transit networks may be considered the "open Internet".

In FAST, each provider network can issue tickets to local hosts in
its network. The network that issued a ticket is called the origin
network for the ticket, and an origin ticket is one that was issued
by the network processing a  ticket.  Tickets are  scoped so that
only the network nodes in the origin network of a ticket interpret
it and apply requested services. 

In  Figure  1,  User  1  and  User  2  reside  in  the  same  provider
network;  each  can  request  tickets  for  network  services  to  be
provided in communication between the two users.  User 1 and
User 3 are in different provider networks. User 1 and User 3 can
each request tickets from their local network to be applied in the
forward path. When User 1 sends packets to User 3, tickets can
be used for services while packets are in Provider A’s network;
and likewise when User 3 sends packets to User 1, tickets can be
used for services while packets transit Provider B’s network.

Figure 1. Example of a dumbbell network topology

Figure 2. End to end ticket flow with reflection

In  order  to  apply  services  in  the  return  path, tickets  may  be
reflected (Figure 2). For instance, when User 3 receives a packet
with a an origin ticket sent by User 1, it can reflect the ticket and
send it back to User 1; when the reflected ticket enters Provider
A’s  network  it  can  be  interpreted  and  services  applied  to  the
packet for the rest of its journey to User 1. Ticket reflection is
symmetric so that User 1 could reflect origin tickets sent by User
3 and services are applied to packets in the return path to User 3
as packets traverse Provider B’s network. The end to end flow of
a ticket with reflection is illustrated in Figure 2.

Ticket properties
A ticket is scoped such that only particular on-path nodes in its
origin network process and act on the ticket.  The scope can be
enforced by encrypting the ticket so that only authorized network
nodes  are  able  to  decode  it.  Encryption  serves  as  a  security
mechanism to limit the exposure of ticket data and to minimize
the plain text in packets.  Encryption, in combination with ticket
authentication,  prevents  forgery and modification,  hides details
about  requested  services,  hides  information  about  applications
and users, and enforces non-transferable tickets.

Tickets may include an expiration time such that they are only
useful  for  some  period  of  time.   For  instance,  if  a  ticket  is
attached to the packets of a flow for the purpose of requesting
network services, an associated expiration time would allow the
infrastructure to limit the use of the ticket for a certain period of
time and prevent unlimited reuse of the ticket.

An important property of tickets is that they are stateless inside
the  network;  this  facilitates  multi-homing  where  routers  in
different paths for a flow would be able to decode and process
host to network signals in packets associated with a flow. While
tickets do not directly convey connection state, they may still be
associated with a transport layer flow.  For instance, a host may
request  tickets  from  a  ticket  agent  to  attach  to  packets  of  a
particular flow. When an on-path element processes the ticket, it
applies the services without regard to transport layer state.



Host to network signals are inherently uni-directional.  In order
for a source host to affect services on the return path of a flow,
"signal” reflection" may be employed.  The idea is that a signal
can be sent with a "reflect" attribute.  At a peer host, the signal
can be reflected in reply packets to affect services for packets in
the return path.

Tickets  are  sent  in  IPv6  Hop-by-Hop Options.  The  benefit  of
Hop-by-Hop Options is that tickets can be used with any transport
protocol.  There  are  some known drawbacks  with  Hop-by-Hop
Options, migrations for these are discussed below.

A ticket should be obfuscated or encrypted for privacy so that
only the local network can interpret it. It should be resistant to
spoofing so that an attacker cannot illegitimately get service by
applying a ticket seen on other flows.

Example use: Network services in 5G
5G, the mobile standard  being developed by the 3rd Generation
Public  Partnership  (3GPP)  [4],  provides  a  good  example  of
applying FAST to enable use of network services.

A key feature introduced by 5G is network slicing [5]. A network
slice  is  an  overlay  virtualized  network  run  over  a  physical
network  with its own operational characteristics. In combination
with Network Function Virtualization (NFV) [6], network slices
provide the foundation for a rich set of network services for low
latency, high throughput, optimized mobile routing, etc. To fully
apply network services to packets, network nodes need to deduce
the service characteristics of an application based on the packets
observed and apply appropriate services.  This process is called
service mapping. Service mapping happens today,  however the
techniques used are ad hoc, imprecise, and inferred.

In FAST, applications explicitly request services to be applied to
the application’s packets. In a 5G network, this would entail that
applications running in UEs (User  Equipment) indicate  desired
services to be provided by the RAN (Radio Access Network) and
core network.  An example of using FAST in a 5G network is
illustrated in Figure 3. Figure 4 illustrates the processing flow of
of tickets in a 5G network.

Figure 3. Example FAST path processing and topology in a 5G network

Figure 4. Example of using FAST in a 5G network for optimizing video chat

Referring  to  the  Figure  3,  suppose  a  user  starts  a  video  chat
application that connects to a server on the Internet. The video
chat application might request a ticket from the local ticket agent
for network services for the video chat. The request might be for
a service class like “video chat service”, or could specify service
characteristics  such as  expected  latency,  jitter  requirements,  or
video frame rate. The issued ticket is attached to packets for the
video chat and services are applied while the packet is in the local
network (the orange arrow of the path). In this example, the first
hop router of the UE may route packets over a network slice that
provides the requested services. When packets exit the provider
network into the Internet, services are no longer applied but the
ticket is still attached to packets (the red arrow in Figure 2).

At the server, packets are received and the attached ticket is saved
in the context for the connection. When packets are sent back to
the client, the server reflects the ticket by setting it in packets.
Packets traverse the Internet without services being applied (the
green  arrow  in  Figure  2)  When  the  packet  enters  the  RAN
network,  the  ingress  router  processes  the  reflected  ticket  and
routes the packet over a network slice for the services. The packet
traverses  the  provider  network  with  the  services  applied  (the
purple arrow in Figure 2)

Protocol and operation
This  section  describes  the  protocol  for  FAST  and  ticket
operations.

Hop-by-Hop option format
Tickets are encoded in IPv6 Hop-by-Hop options [7] as illustrated
in Figure 5.

Figure 5. Format of a ticket in a Hop-by-Hop option



The fields of the Hop-by-Hop option containing a ticket are:
• Option Type: Type of Hop-by-Hop option.  There are

two  possible  types  for  FAST  ticket  options:  an
unmodifiable and a modifiable variant.

• Opt Data  Len:  Length of  the option data  field.   The
option data  is comprised of  the Pr,  Ticket  Type,  and
Ticket Data fields.

• Pr: Indicates the origin and reflection properties of the
ticket. Possible values are:

• 0x0: Origin ticket not reflected.  Don't reflect at
the destination host.

• 0x1:  Origin  ticket  to  be  reflected.   Ticket  is
requested to be reflected by the destination host.

• 0x2: Reflected ticket.  The ticket was reflected
by a destination host and is being returned to the
origin source host.

• 0x3: Reserved
• Ticket Type: The type and format of the ticket.  This

value is used by nodes in the origin network to interpret
the  rest  of  the  ticket  data.  Values  for  this  field  are
specific to the network that issues the ticket.  The type
is  an  IANA  managed  number  space.  A  type  of  0
indicates  a "null"  ticket  that  isn't  to  be processed by
receivers.

• Ticket Data: Contains the ticket data that describes the
services applied.  The format and semantics of the data
are  determined by the Ticket Type.

Ticket Data
It is  expected that tickets are encrypted and each ticket has an
expiration time (Figure 6). For instance, a ticket may be created
by encrypting the ticket data with an expiration time and using
the source address, destination address, and a shared key as the
key for encryption. The operative part of the ticket that describes
the service may have different types of data. For instance, a set of
flags could be used, a list of service values, or a profile index into
a table that describes a set of services. A ticket with an expiration
time and service profile index might have the format shown in
Figure 7.

Figure 6. Format of a ticket with an expiration time. Ticket Data is variable length
with a format determined by the ticket type

Figure 7. Format of a ticket with an expiration time with a service profile index. The
service profile index could be a 32 bit number used to index a service parameters
table

Operation
Existing client applications can be modified to request tickets and
set them in packets. It is also possible for the OS to set FAST
tickets  on  behalf  of  an  application  that  can’t  be  changed  or
recompiled.  The  kernel  may  need  some  small  changes  or
configuration to enable an application to specify the FAST Hop-
by-Hop option for its packets (see section below). In BSD sockets
this can be done by a setsockopt system call or in ancillary data of
the sendmsg system call.

An application that wishes to use network services first requests
tickets from a ticket agent. The request could be in the form of an
XML structure with canonical elements. A request could be sent
via a web service using RESTful APIs [8]. Internally in the host,
the ticket agent might be accessed through a library that interfaces
to  a  ticket  daemon  that  in  turn  arbitrates  requests  between
applications and a ticket agent in the network.

Service mappers need to parse and process tickets in the fast data-
path.  This  entails  an  implementation  that  does  efficient  IPv6
header  processing.  Tickets  need  to  be  parsed,  validated  or
decrypted, looked up, and interpreted quickly.

To perform ticket reflection, servers must be updated. In the case
of a connected socket (TCP, SCTP, or a connected UDP socket)
this is a relatively minor change to the kernel networking stack
which  would  be  transparent  to  applications.  For  unconnected
UDP,  an  application  could  use  ancillary  data  in  recvmsg and
sendmsg to receive and reflect tickets.

Tickets facilitate fine grained policies and “per use charging” of
services. There are three points at which policy and charging can
be applied:  1) at  ticket  request time,  2)  when a client  sends a
packet with a ticket, and 3) when a network ingress node receives
a packet with a reflected ticket

At ticket request time, policy can be applied to determine if the
network  can  or  should  provide  the  services  being  requested.
Ticket requests are authenticated and the requestor's  identity is
known.  A database  can  be  maintained  that  holds  the  per  user
policies, resource limits, and current resource utilization as input
to a policy decision for issuing a ticket.

Each time a ticket is seen on the network it can be accounted for.
The two cases, when a ticket is sent from a client or a ticket is
reflected by a server, should be accounted for separately since the
tickets sent directly from the client are a bit more trustworthy. A
rogue peer, for instance, could attempt a narrow Denial of Service
(DOS) attack by flooding the flow with fake packets using the
same ticket.

Per  use  accounting  is  done  at  the  service  mappers.  Each
occurrence bumps a counter. Aggregated counts are periodically
sent to a centralized accounting system that correlates the use of
tickets  across the service mappers. Based on the resulting data,
users can be charged precisely for the services they actually used.



Hop-by-Hop Options drops
RFC2460  [9]  required  that  all  intermediate  nodes  in  a  path
process Hop-by-Hop Options.  Some routers deferred processing
of Hop-by-Hop Options to the software slow path, others ignored
them,  and  still  others  elected  to  summarily  drop  all  packets
containing Hop-by-Hop Options.   A related issue was that the
number of Hop-by-Hop Options in a packet was only limited by
the MTU for the packet.  The lack of limits, combined with the
requirement that nodes must skip over unknown options (when
two  high  order  bits  in  the  option  type  aren’t  set), creates  an
opportunity for DOS attacks by sending long lists of unknown
Hop-by-Hop  options.  These  issues  have  severely  impeded  the
deployment of Hop-by-Hop Options on the Internet ([10], [11).

There  is  ongoing  work  to  fix,  or  at  least  mitigate,  the
deployability problems of Hop-by-Hop options:

• RFC8200 [7]  specifies  that  intermediate  nodes MAY
ignore Hop-by-Hop options.  There is no concept of a
Hop-by-Hop  option  that  must  be  processed  by  all
nodes, the current assumption in defining any option is
that  it  may be  processed  by only  some nodes  in  the
path,  or  even  none  at  all.  Allowing  nodes  to  ignore
options  they're  not  interested  in,  instead  of  just
dropping the packets, preserves the usability of Hop-by-
Hop across the whole path.

• Internet Draft  ietf-6man-hbh-processing [12]  modifies
the  processing  of  Hop-by-Hop  options  described  in
[RFC8200]  to  make  processing  of  the  IPv6 Hop-by-
Hop  Options  header  practical.  In  particular,  this
clarifies  the  expectation  that  Hop-by-Hop  Options
should not be processed in the slow path and that new
Hop-by-Hop  options  are designed  to  always  be
processed in the fast path.

• Internet  Draft  ietf-6man-eh-limits  [13]  specifies  that
intermediate  nodes  that  process  Hop-by-Hop Options
may set and apply configurable limits on Hop-by-Hop
Options processing.  For instance, one limit is for the
number  of  options  that  are  processed;  if  the  limit  is
exceeded then options processing is terminated and the
packet is forwarded without any ill-effects.  The use of
limits is optional and while specific default limits are
recommended, there are no specific "hard" limits that
must be enforced.

• Internet  Draft  herbert-eh-inflight-removal  [14]
describes  a  protocol  to  remove  Hop-by-Hop  Options
headers from packets in flight.  This could be applied in
host  to  network  signaling  by  arranging  that  the  last
router that processes a signal in a Hop-by-Hop option
removes  the  Hop-by-Hop  Options  header  from  the
packet.   Removing  the  Hop-by-Hop Options  headers
increases the probability that a packet won’t be dropped
without substantial loss of functionality.

Linux kernel support
The  Linux  kernel  needs  some  changes  to  support  extension
headers and Hop-by-Hop options for FAST. A draft patch set was
posted to Netdev mailing list [15].

 The functionality of these patches includes: 

1. Allow modules to register support for Hop-by-Hop and
Destination options. This is useful for development and
deployment of new options.

2. Allow  non-privileged  users  to  set  Hop-by-Hop  and
Destination  options  for  their  packets  or  connections.
This is especially useful for options like Path MTU and
IOAM options where the information in the options is
both sourced and consumed by the application.

3. In conjunction with #2, validation of the options being
set by an application is done. The validation for non-
privileged users is purposely strict, but even in the case
of  a  privileged  user,  validation  is  useful  to  disallow
allow application from sending ill-formed packets (for
instance  now a  TLV could  be  created  with  a  length
exceeding the bound of the extension header)

4. Consolidate various TLV mechanisms. Segment routing
should be able to use the same TLV parsing function, as
should UDP options when they come into the kernel.

5. Use a TLV type lookup table to make option lookup on
receive is O(1) instead of list scan (O(N)).

6. Allow  setting  specific  Hop-by-Hop  and  Destination
options  on  a  socket.  This  would  also  allow  some
options to be set by application and some might be set
by kernel.

7. Allow options processing to be done in the context of a
socket.  This will  be useful for FAST and Path MTU
(PMTU) options.

8. Allow experimental IPv6 options in the same way that
experimental TCP options are allowed.

9. Support a robust means of extension header insertion.
Extension  header insertion  is  a  controversial
mechanism that some router vendors are insisting upon.
The way they are  currently doing it  breaks the stack
(particularly  ICMP  and  the  way  networks  are
debugged). With proper support we can at least mitigate
the effects of the problems being created by extension
header insertion.

10. Support IPv4 extension headers.  This allows Hop-by-
Hop Options and other  extension headers  to  be used
with IPv4 with the same semantics of their use in IPv6.



Conclusion
Firewall  And Service Tickets  is  a  facility  that  allows hosts  to
signal  the  network  for  requesting  services  and  admission  of
packets. FAST promotes the end-to-end principle, net neutrality,
and  clean  protocol  layering.  It  also  leverages  forward  looking
features  of  the  IPv6  protocol.  The  ultimate  goal  is  to  spur
innovation in network services to benefit users. 
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