
Lightweight Implementation of Per-packet Service Protection in eBPF/XDP

Ferenc Fejes1, Ferenc Orosi2, Balázs Varga1, János Farkas1
1 Ericsson Research TrafficLab, 2 Eötvös Loránd University

Budapest, Hungary
ferenc.fejes@ericsson.com

Abstract

Deterministic communication means reliable packet forward-
ing with close to zero packet loss and bounded latency. Packet
loss or delay above a threshold caused by, e.g., equipment fail-
ure or malfunction could be catastrophic for applications that
require deterministic communication. To meet loss related tar-
gets, per-packet service protection has been introduced by de-
terministic communications standards; it is provided by Frame
Replication and Elimination for Reliability (FRER) for Layer
2 Ethernet networks and by Packet Replication, Elimination,
and Ordering Functions (PREOF) for Layer 3 IP/MPLS net-
works.
We have implemented FRER with two conceptually different
methods: (1) in eBPF/XDP as a lightweight software imple-
mentation; and (2) in userspace. We evaluate our XDP FRER
via an experimental analysis and compare the two FRER im-
plementations.

1. Introduction
Several applications - such as industrial automation,
aerospace, automotive - require deterministic communica-
tion, where high reliability, bounded latency, low packet de-
lay variation (jitter), and no packet loss due to congestion or
network failure are essential. This implies that the network
should be carefully engineered and provisioned by the opera-
tor to avoid congestion-related packet losses or high queueing
delays. Time-sensitive applications typically communicate
with periodical data transmission, therefore, their traffic char-
acteristics are known by the operator. However, equipment
failures can happen even in the most carefully engineered net-
works, potentially resulting in communication outage. In an
industrial environment, the wiring may break, the radio link
can be temporarily shielded by an obstacle, or the network
nodes can be damaged too.

Many legacy networks apply resiliency techniques like
rerouting to cope with topology changes, e.g., failures. How-
ever, convergence of a routing protocol takes time, which
causes outage in the communication. To further mitigate the
impact of failures, protection switching techniques are used
to reduce the failover time. However, protection switching
techniques are dependent on failure detection and signaling
of switchover, so they cannot fully eliminate possible outage
during network transition. Per-packet service protection has

been introduced to overcome the failover time problem men-
tioned above for former methods.

Per-packet service protection is specified for Layer 2 net-
works by the IEEE 802.1 Time-Sensitive Networking (TSN)
Task Group in the IEEE 802.1CB Frame Replication and
Elimination for Reliability [1] (FRER) standard. Along a
common architecture with TSN, the IETF Deterministic Net-
working Working Group defines per-packet service protec-
tion for Layer 3 networks as Packet Replication, Elimination
and Ordering Functions (PREOF) see, e.g., RFC 8655 [2].
The operation of FRER and PREOF Replication (R) and
Elimination (E) functions are essentially the same. They rely
on (maximally disjoint) redundant forwarding paths, which
are explicit, to avoid convergence issues. As they are fixed
paths (a.k.a. ”nailed-down paths”), they do not change even
in case of a change in the network topology. The Replica-
tion function replicates packets, amends their header with a
sequence number to be able to identify copies of the same
packet and transmits the replicas to redundant network paths.
The Elimination function forwards one of the replicas of a
packet and discards the surplus. The IEEE specification dives
into the deep details of the operation; therefore, our paper
focuses on FRER.

The rest of the paper is structured as follows. First, we
briefly describe the per-packet protection operation, with the
help of an example network and a failure scenario. After that,
we present our lightweight eBPF/XDP [3] implementation of
FRER, referred to as XDP FRER in the rest of the paper, and
discuss its benefits and limitations. Finally, we evaluate XDP
FRER and compare it with an alternative, userspace FRER
implementation (referred to as uFRER).

2. Per-Packet Service Protection
The two main components of the per-packet service protec-
tion are the replication and elimination functions. Their op-
eration requires the identification of streams (data flows) a
packet belongs to. Streams are identified based on the packet
header fields, specified in the TSN/DetNet standards. The
Layer 2 and Layer 3 standards specified different header
fields for stream identification at the different layers. A given
per-packet service protection implementation has to support
matching for these header fields and is configured which val-
ues are used for the identification of a given stream. It can be
configured which header fields are used for stream identifica-



tion.
At the edge of the network a unique sequence number is

generated for each packet of a stream. The sequence number
increases monotonically and warps around when it reaches
its maximum value. The sequence number is encapsulated
in an appropriate header field (e.g., redundancy tag); thus, it
is carried with the packet across the network. The format of
that header depends on whether Layer 2 or Layer 3 service
protection is used.

The node running the elimination function receives the
packets and identifies whether they belong to a protected
stream. The elimination function decides based on the se-
quence number of the packet about forwarding. Only the
replica received first is forwarded; every other replica packet
is dropped. A so-called history window stores which se-
quence numbers have been recently received, hence it is the
basis for the drop of replicas. The elimination algorithm is
stateful, it stores the recently received sequence numbers of
the served stream, what is the basis for the drop of replicas.

A benefit of this operation is that the decision about the re-
ceived packet is immediate - no buffering is necessary. Note:
deterministic streams are uni-directional. Replication/Elimi-
nation functions are stream specific.

2.1 Operation example
The example network in Figure 1. show three streams, red,
green, and blue, and six network nodes A-F. The letter (R)
indicates the replication and (E) the elimination functions for
the streams (they color-coded according to their correspond-
ing stream). Stream blue is protected by the replication func-
tion on node-E sending the replicas on disjoint paths via B
and C.

Similarly green is protected by the replication function on
node-A. Multiple replication functions can enhance the pro-
tection of a stream, e.g. green is further protected by its repli-
cation function on node-B. Red is protected by its replication
function on node-B. The elimination functions on node-F can
handle arbitrary replicas of the same packet.

In case the B-E link fails, all of the streams continue to
operate without packet loss. Furthermore, as one can see,
none of the streams are affected by individual link failures of
A-C, C-E, D-F, or B-D.

Depending on the network topology and the placement of
the replication and elimination functions, further protection
could be applied. In our example, red and blue streams can
be further protected by configuring replication functions on
nodes node-A and node-F accordingly.

In our paper, we investigate the implementation of the
Layer 2 per-packet service protection functions i.e., FRER.
Implementation of Layer 3 PREOF is similar from function-
ality perspective, but not discussed here.

3. Frame Replication and Elimination for
Reliability

FRER has its standard encapsulation for the sequence num-
ber, which is called Redundancy-tag (R-tag). R-tag is a six-
byte field, which includes a 2-bytes sequence number.

E Elimination func.

R Replication func.

R
R

B

C

R

E

D

E
E

F

E
R

A

Figure 1: Example network with three streams, six network-
ing nodes and multiple replication and elimination function
instances

The FRER functions can be implemented in locations
where Layer 2 packet processing takes place (e.g. hardware,
kernelspace, userspace). The FRER standard does not men-
tion any preferred location for the implementation.

A FRER implementation can benefit from the well-
designed internal packet processing pipeline inside a hard-
ware, especially in a TSN switch chip. The maximum pro-
cessing cycles for a packet can be calculated, with the extra
cycles introduced by the FRER functions as well. Therefore,
the delay introduced can be bounded and deterministic, re-
gardless of the packet rate or number of streams.

In the case of software implementation, FRER is just one
application running on the system, competing for CPU re-
sources with other applications. Proper configuration of the
system should be performed by the administrator, to ensure
the FRER process can consume the required resources. How-
ever, profiling and configuration can be difficult, in the kernel
due to the large number of tunable parameters. Implement-
ing FRER in the Linux kernel, for example, requires careful
design since Linux already has a very complex and perfor-
mant Layer 2 stack. FRER implementation proposals have
been already made [4, 5], but none of them accepted into the
mainline Linux yet.

Priority management and performance profiling are eas-
ier in userspace, however, the throughput decreased because
of the copy between the kernel and userspace memory ar-
eas. Usually TSN applications’ transmitting bitrate is fixed
and moderate, so throughput is less critical than determin-
ism. One can implement FRER with the help of the Linux
userspace API-s, without caring about the design and opera-
tion of the Linux kernel’s Layer 2 stack.

4. The XDP FRER
XDP [3] is the eBPF [6] programmable packet processing
framework of the Linux kernel. It is essentially a packet pool
that can be used by the network device’s driver accompanied
by one or more eBPF programs acting on the received pack-
ets. With XDP, the decision about the fate of the packet (e.g.
drop, redirect, or pass to the network stack) happens as close
as possible to the hardware. This section goes through the
eBPF/XDP toolset required for the implementation of FRER
in XDP.



4.1 Management
Despite the XDP FRER data plane runs in the kernel, it is
possible to communicate with the userspace through eBPF
maps. These maps can be accessed and updated both from the
XDP program and the userspace management program. XDP
FRER uses these features to pass statistics to the management
plane and to get VLAN translation tables, interface indexes,
and configuration parameters from the management plane. In
this paper, VLANs are used in XDP FRER to distinguish
streams and to separate background traffic from streams. It
is the best of both worlds; high flexibility and extensibility
while kernelspace performance.

An XDP program is reference counted and freed by the
kernel if all of its users disappear (e.g., every interface where
the elimination function is attached goes down). Even though
the interfaces coming back, they no longer run the XDP pro-
gram. To avoid that, XDP FRER uses the BPF link API which
automatically creates a file system reference for every XDP
program. As a result, XDP programs run as before when the
interface is up again.

4.2 eBPF packet manipulation
The capability to add or remove packet header fields is neces-
sary for the sequence generation and elimination functions.
The XDP FRER sequence generation function extends the
head with the size of the R-tag, copies the Ethernet and
VLAN headers, then inserts the R-tag with the new sequence
number. The elimination function is similar; it reads the
sequence number from the R-tag, then copies the Ethernet
and VLAN headers back, and finally shrinks the head of the
packet. Note: sequence generation can be skipped if the
packet already has an R-tag. In this case, replication can be
performed without modifying the packet with sequence gen-
eration. The same applies to elimination: it can leave the
R-tag on the packet if configured that way.

For example Listing 1. show a helper function for pushing
an R-tag. The bpf xdp adjust head eBPF helper func-
tion can grow or shrink the head pointer of the packet. In
line 8, we extend the headroom with 6 bytes just to make
enough space for the R-tag. Then the pkt->data will
points to the start of the extended headroom (line 12).

In line 19 we move the Ethernet and VLAN headers to
this new start of the headroom, then in line 24-27 we fill the
VLAN and R-tag header fields with proper protocol IDs and
sequence number.

4.3 Replication
The implementation of the XDP FRER replication routine

is presented in a simplified form in Listing 2. Initially, the
stream is identified by reading the VLAN ID of the packet
(line 20). Next, the sequence generator object for the given
VLAN ID is retrieved (line 24). Upon generating the new
sequence (line 29), the R-tag gets pushed into the packet
(line 30, see Listing 1). In practice, sequence generation and
replication can be decoupled. For example, the node closer
to the talker generates a sequence number for the packet, and
the rest of the configured nodes do not touch the R-tag if the
packet already has one, but only do the replication.

1 #define ETH_SIZE 14
2 #define VLAN_SIZE 4
3 #define RTAG_SIZE 6
4
5 static inline int add_rtag(struct xdp_md *pkt, uint16_t seq)
6 {
7 /* Make room for R-tag (RTAG_SIZE)*/
8 if (bpf_xdp_adjust_head(pkt, 0 - RTAG_SIZE))
9 return -1;

10
11 /* Checking the new boundaries for the sake of the verifier */
12 void *data = (void *)(long) pkt->data;
13 void *data_end = (void *)(long) pkt->data_end;
14 if(data + ETH_SIZE + VLAN_SIZE + RTAG_SIZE > data_end)
15 return -1;
16
17 /* Move Ethernet+VLAN headers to the front of the buffer */
18 /* memmove(destionation_addr, source_addr, size) */
19 __builtin_memmove(data, data + RTAG_SIZE, ETH_SIZE + VLAN_SIZE);
20 struct vlan_hdr *vhdr = data + ETH_SIZE;
21 struct rtaghdr *rtag = data + ETH_SIZE + VLAN_SIZE;
22
23 /* Prepare the R-tag */
24 __builtin_memset(rtag, 0, RTAG_SIZE);
25 rtag->nexthdr = vhdr->h_vlan_encapsulated_proto;
26 vhdr->h_vlan_encapsulated_proto = bpf_htons(0xf1c1);
27 rtag->seq = bpf_htons(seq);
28
29 return 0;
30 }

Listing 1: Example helper function pushing R-tag after the
VLAN tag to an XDP frame

1 struct tx_ifaces {
2 __uint(type, BPF_MAP_TYPE_DEVMAP_HASH);
3 ...
4 };
5
6 struct {
7 __uint(type, BPF_MAP_TYPE_HASH_OF_MAPS);
8 __array(values, struct tx_ifaces);
9 ...

10 } repl_tx_map SEC(".maps");
11
12 SEC("xdp")
13 int replicate(struct xdp_md *pkt)
14 {
15 void *data = (void *)(long) pkt->data;
16 void *data_end = (void *)(long) pkt->data_end;
17 if (data + ETH_SIZE + VLAN_SIZE > data_end)
18 return XDP_DROP;
19
20 int vid = get_vlan_id(pkt);
21
22 /* "Identify" the stream by VLAN ID
23 * and lookup it's sequence generator function*/
24 struct seq_gen *gen = bpf_map_lookup_elem(&seqgens, &vid);
25 if (!gen)
26 return XDP_DROP;
27
28 /* Generate a sequence number and push an R-tag */
29 uint16_t seq = generate_seq(gen);
30 if (add_rtag(pkt, seq) < 0)
31 return XDP_DROP;
32
33 /* Replicate the packet for multiple egress interfaces */
34 struct tx_ifaces *tx = bpf_map_lookup_elem(&repl_tx_map, &vid);
35 if (!tx)
36 return XDP_DROP;
37
38 int flags = BPF_F_BROADCAST | BPF_F_EXCLUDE_INGRESS;
39 return bpf_redirect_map(tx, 0, flags);
40 }

Listing 2: Example XDP routine implements FRER replica-
tion



1 SEC("xdp")
2 int eliminate(struct xdp_md *pkt)
3 {
4 void *data = (void *)(long) pkt->data;
5 void *data_end = (void *)(long) pkt->data_end;
6 if (data + ETH_SIZE + VLAN_SIZE + RTAG_SIZE > data_end)
7 return XDP_DROP;
8
9 int vid = get_vlan_id(pkt);

10
11 /* Lookup the sequence recovery object for the stream
12 * by VLAN ID*/
13 struct seq_recovery *rec = bpf_map_lookup_elem(&rcvy_map, &vid);
14 if (!rec)
15 return XDP_DROP;
16
17 /* Read the sequence number of the packet and remove
18 * the R-tag*/
19 int seq = rm_rtag(pkt);
20 if (seq < 0)
21 return XDP_DROP;
22
23 /* Protect the recovery object from concurrent
24 * access (we keep receiveing packets)*/
25 bpf_spin_lock(&rec->lock);
26 bool pass = recover(rec, seq);
27 bpf_spin_unlock(&rec->lock);
28 if (pass != true)
29 /* ...drop the replica packet(s)... */
30 return XDP_DROP;
31
32 /* Transmit the only packet that survives elimination */
33 int *tx_ifindex = bpf_map_lookup_elem(&tx_map, &vid);
34 if (!tx_ifindex)
35 return XDP_DROP;
36 return bpf_redirect(*tx_ifindex, 0);
37 }

Listing 3: Example XDP routine implements FRER elimina-
tion functionality

The bpf redirect helper eBPF function can be used
with the BPF F BROADCAST flag (in lines 38 and 39) to
transmit the same packet on multiple interfaces. The spe-
cial eBPF map type BPF MAP TYPE DEVMAP HASH (line 2)
stores the egress interfaces identified by their index. A map
type named BPF MAP TYPE HASH OF MAPS is utilized to
relate these maps of egress interfaces to the streams (VLAN
IDs). The lookup occurs at line 34.

4.4 Elimination
Listing 3 shows a simplified version of the elimination

function of XDP FRER. Initially, we search for the sequence
recovery object using the VLAN ID of the received packet
(line 13). The object stores the state of the recovery algo-
rithm, which is essential for determining whether the packet
is new, previously received, or potentially out-of-window. We
remove the R-tag in line 19, but first we read its sequence
number. In practice, this should be conditional because we
may have further elimination functions in the network for this
stream.

The sequence number (line 19) and recovery object
(line 13) determine the fate of the packet. It is important to
protect the recovery object from concurrent access by using
bpf spin lock (lines 25, 27). This is necessary because
the XDP elimination routine could be anywhere in the execu-
tion when a new packet of a member stream is received. The
implementation details of the recover function (line 26)
are omitted due to space constraints. However, the FRER
standard [1] defines multiple recovery algorithms, our imple-
mentation use the vector recovery algorithm. The algorithm

will accept the first received instance of the same packet and
drop all subsequent replicas (line 30). Finally, we lookup the
egress interface for the packet which is passed by algorithm.

Furthermore, the elimination function has a recovery time-
out (see the standard [1] for details). If no packet is received
after that interval, the elimination function resets its state and
accepts the next received packet like it does after initializa-
tion, i.e., any sequence number is accepted. That can be
done either with BPF timers or by calling BPF program from
userspace with the BPF PROG RUN infrastructure [7]. XDP
FRER uses the BPF test program method, since it does not
have to be fast or very precise, which is called in every 2 sec-
onds, and checks a per-recovery instance timestamp storing
the time of the last received packet.

5. Evaluation
Since there are no software FRER implementations pub-
licly available, we compared XDP FRER to our in-house
userspace FRER implementation (referred to as uFRER in the
following). The uFRER uses the AF PACKET raw socket for
packet reception and sending. The epoll Linux API [8] is
used for efficient socket monitoring. Further optimizations
are possible, e.g., using busy polling on the receiving socket
or using AF XDP socket instead of AF PACKET. However,
we decided to stick with epoll and AF PACKET for the sake
of simplicity.

5.1 Testbed
Our test machine is equipped with an AMD EPYC 7402P
24-Core Processor and 128Gb RAM. Ten CPU cores are iso-
lated from the Linux housekeeping tasks and regular process
scheduling to avoid system noise while running the measure-
ments on those cores. We also modified the interrupt affinity,
in order to direct the packet processing into the isolated CPUs
(with irqbalance daemon disabled, to use static configu-
ration).

CPU frequency governor set to performance, to keep
all cores on fixed 2.8GHz, and avoid noise caused by the
dynamic frequency scaling. We used the Ubuntu 23.04
GNU/Linux distribution operating system, with its unmodi-
fied Linux kernel (version 6.2.0-27). Furthermore, libbpf 1.2
and libxdp 1.3 development libraries were used to implement
XDP FRER.

We used Intel i225 NICs for each measurement presented
below. igc [9], the device driver for this NIC, has been avail-
able upstream since Linux 4.20. It is still receiving bug fixes
and improvements, so all of our measurements reflect the
driver version found in the above kernel version.

To verify that there is no major driver issue altering the
results, we repeated all measurements with Virtual Ethernet
(veth)[10] network devices. We see consistent results except
for slightly smaller minimum and average delays (since the
packets don’t actually leave the machine). XDP has a na-
tive mode where the eBPF program is executed by the device
driver. We chose this mode for our measurements. XDP also
has a generic mode, which is executed by the network stack
when the driver finished the reception of the packet, and allo-
cates the socket buffer for it. Generic Receive Offload (GRO)



PC2

Node A

PC1

eth0eth0

Node B

ab0

ab1

ba0

ba1

eth0 eth0
XDPRXDPR

XDP E XDPE

XDP E XDPE

R
E Elimination function

Replication function

Ping

tcpdump

Figure 2: The test network used for experiments. The dashed
lines from elimination functions mark the conditional packet
drop

should be enabled on the veth devices to utilize XDP native
mode; otherwise, the XDP falls back to generic mode.

5.2 Test network
We built the simplest possible network for our tests: two
hosts, PC1 and PC2, each connected to a node (A and B)
see Figure 2. There are two links used by FRER between the
nodes. The replication functions are placed at the eth0 in-
terfaces of nodes A and B, and the elimination functions are
placed at the ab0, ab1, ba0, ba1 interfaces of nodes A and
B, respectively. The actual hardware NICs are named differ-
ently by Linux, but we will stick with these more meaningful
names for simplicity.

5.3 Scenarios
We tested the stream-protection capability and the perfor-
mance of XDP FRER. In the first case, we created artificial
link failures to see if there was any packet loss.

We configured two streams for the performance test, one in
each direction. We used ping (ICMP traffic) to test the RTT
delay between the hosts. The ping interval was set to 1 mil-
lisecond (1000 packets per-sec) and the packet size was 1000
bytes. We generated 10000 packets with ping in each sce-
nario. We verified the values reported by ping for a handful of
scenarios using the iperf2 UDP delay measurement method.
This verification confirmed that the accuracy of the ping is in
the sub-ten microsecond range.

Testing XDP FRER stream-protection from link failure
In this scenario, we pinged PC2 from PC1 every 10ms. Af-
ter 5 seconds, we turned off ab0-ba0 link for 5 seconds then
turned it back on. As visible on Figure 3.a the ICMP sequence
numbers on PC1 keep increasing since one path is still active.
To increase the visibility of the failure, we configured the i225
NICs to operate at 100Mbps on ab0-ba0 path and at 2.5Gbps
on the ab1-ba1 path. As a result, the failure becomes appar-
ent in the RTT measurement because the failing path has a
faster speed (with less frame serialization delay) and the al-
ternate path has slightly higher delay.

Next, the test was repeated with both paths turned off
around 4 sec (Figure 3.b). As expected, a gap is observed in
the ICMP sequence numbers. Then around 8 sec we turned

0.150 ms

0.200 ms

0.250 ms

0.300 ms

0.350 ms

0.400 ms

0.450 ms

Pi
ng

 st
at

us

(a) Faster path down
RTT
ICMP sequence numbers

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
Time (s)

0.150 ms

0.200 ms

0.250 ms

0.300 ms

0.350 ms

0.400 ms

Pi
ng

 st
at

us

(b) Both paths down

Figure 3: Ping RTT and sequence numbers with XDP FRER
if one (a) or both (b) paths fails

path ab0-ba0 and around 11 sec path ab1-ba1 back on. The
ICMP sequence numbers started to increase immediately af-
ter the first path was turned on.

Normal and Real-time priority We first investigated what
is the effect of CPU load on the packet forwarding perfor-
mance of uFRER. We pinned the ping processes (on the PCs)
and the two uFRER processes (nodes A and B) to different
isolated CPU cores with the taskset utility. We generated
an additional 100% CPU load on the cores of the uFRER
processes. For that, we used the stress-ng [11] utility with
stream, matrix-3d and cpu (loop) stressors.

The RTT distribution results are plotted in Figure 4., with-
out extra load (blue line) and extra CPU load (green line) on
the uFRER’s CPU core. The measurements were repeated
without additional load as well. The load affects the forward-
ing delay of uFRER; the average latency increased slightly
while the tail latency increased dramatically.

The simplest possible enhancement without any modifica-
tion of the uFRER is running it with real-time priority. Linux
has had real-time priority support for more than a decade,
designed especially for low-latency applications, e.g., audio-
video equipment, and industrial controllers. Important to note
here that we used the default Linux kernel shipped with the
distribution (Ubuntu), not a fully preemptable real-time ker-
nel. Running uFRER with the chrt utility (SCHED RR sched-
uler with 99 task priority) decrease the average and tail for-
warding latency as shown in Figure 4 with orange line. In
the following, we use real-time priority for uFRER in every
scenario when comparing it to XDP FRER.

XDP FRER and uFRER We compare the RTT distribu-
tion of XDP FRER and uFRER on idle and loaded systems in
Figure 5. As shown in the figure, XDP FRER does not only
perform better in average and tail latencies, but it seems to
be unaffected by the CPU load. This can be explained by the
traffic pattern. 1000 packets per-sec is a fairly low packet rate,
at which almost every packet can be received in an interrupt
context (IRQ).

The interrupt and software interrupt (called IRQ and
softIRQ) is a high-priority, atomic, and non-preemptible con-



0.2 0.3 0.4 0.5

RTT (millisec)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

uFRER (default prio) and extra CPU load
uFRER (realtime prio) and extra CPU load
uFRER only (no extra load)

Figure 4: RTT distribution when running uFRER on isolated
CPU core without extra CPU load (blue) and with extra load
using normal (green) and real-time (orange) priorities

text, or at least regular threads and softIRQs are always pre-
empted by IRQs. For this reason, CPU load does not af-
fect XDP FRER as much as uFRER. Important to mention
is that since Linux 5.12 threaded NAPI is available. In this
mode, the NAPI (which is a poller abstraction for the network
drivers to receive packets) runs as a kernel thread, and its re-
source allocation is controlled by the task scheduler. This
way, the CPU load can affect XDP FRER latencies more if
the NAPI threads are not running at a high enough priority.

XDP FRER under load We then added UDP background
traffic generated by iperf set to 1Gbps (10 UDP senders,
100Mbps each). This extra traffic generates additional
softIRQ load on the system. XDP processing also takes place
in the softIRQ context (unless threaded NAPI is explicitly en-
abled, more on that later). If the softIRQ load is moderate, the
CPU can keep up with the processing and also have time for
other tasks scheduled for it. However, in our case, the softIRQ
load is high, and at some point the kernel needs to pause the
softIRQ processing and postpone it until later. Linux spawns
a thread named ksoftirqd (plus the CPU core ID) bound to
each CPU core where the deferred softIRQs are offloaded.

As we confirmed with bpftrace, under moderate load, ev-
ery packet is processed in the softIRQ context. With back-
ground traffic, the CPU cannot keep up and offloads process-
ing to ksoftirqd. While only about 1% of the packets are
processed in ksoftirqd, the softIRQs still form a queue and
cannot be processed immediately. As can be seen in Figure
6. with background UDP traffic, the average and tail latency
increased (orange line).

6. Special note
As mentioned earlier, a mutual exclusion (with
bpf spinlock) required for accessing the recovery
algorithm’s state of a given TSN stream, since the XDP
FRER’s recovery function is triggered by packet arrivals.
This issue can be avoided by redirecting interrupts from
multiple receiving NICs to the same CPU, since softIRQs are
executed sequentially. However, softIRQs run in a regular

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

No extra CPU load
XDP FRER
uFRER

0.10
0.2

0

RTT (millisec)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Loaded CPU (stress-ng)

XDP FRER
uFRER

Figure 5: RTT distributions of XDP FRER and uFRER with
and without extra CPU load

0.10
0.2

0
0.3

0
0.4

0

RTT (millisec)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

With UDP background traffic
Without background traffic

Figure 6: RTT distribution of ping (1000 PPS) with XDP
FRER with and without UDP background traffic

thread context with the real-time kernel, which makes them
preemptible. The same applies to threaded NAPI, which is
available since Linux 5.12 (but disabled by default). Using
bpf spinlock does not limit the functionality of XDP
FRER in any way. However, it is currently not possible to call
functions (even eBPF helper functions) between spinlocks.
In the future, eBPF verifier improvements will likely solve
this limitation.

We replicated the physical test environment by using net-
work namespaces and veth interfaces during the prototyping
of XDP FRER. Although the topology and connections were



essentially identical in both setup, it must be noted that veth
is purely a software network device, and the frames cannot be
transmitted outside the machine. After successful execution
in the virtual environment, we ran the scripts on the physical
setup. It may be counterintuitive when attaching and running
XDP program on a network interface, promiscuous mode is
not implicitly enabled. The packets are only sent to the CPU
(and processed by XDP) if the NIC is in promiscuous mode,
which can be enabled with the ethtool command. On the other
hand, in veth environment promiscuous mode is the default.

7. Conclusion
This paper briefly explains the main concepts of per-packet
service protection; in particular FRER, which is the standard
Layer 2 variant. We implemented FRER in eBPF/XDP and
also in userspace. We have performed experimental analysis
to compare the different implementations. Our finding is that
eBPF/XDP is a great fit for realizing FRER since it is as flex-
ible as a userspace implementation considering management,
whereas it can run in kernel space, hence can provide better
performance. Furthermore, no kernel modifications are re-
quired because it uses the standard eBPF interfaces and XDP
packet processing hook points. We also evaluated the perfor-
mance of XDP FRER and showed that the introduced delay
and low delay variation meet the requirements of determin-
istic communications. In addition, we compared the perfor-
mance of XDP FRER with that of our userspace FRER im-
plementation and showed the advantages of XDP FRER on a
loaded system with very low delay operation.

References
[1] IEEE, “ IEEE 802.1CB-2017 ,” 2017. https:

//standards.ieee.org/ieee/802.1CB/
5703/, access.: 2023-08.

[2] N. Finn, P. Thubert, B. Varga, and J. Farkas, “De-
terministic Networking Architecture.” RFC 8655, Oct.
2019. https://www.rfc-editor.org/info/
rfc8655, access.: 2023-08.

[3] Toke et.al., “The express data path: Fast programmable
packet processing in the operating system kernel,”
CoNEXT ’18, p. 54–66, ACM, 2018.

[4] NXP, “ net: qos: introduce a frer action to im-
plement 802.1CB ,” 2021. https://lore.
kernel.org/netdev/20210928114451.
24956-1-xiaoliang.yang_1@nxp.com/,
access.: 2023-08.

[5] Cruise LLC, “ net/hanic: Add the hanic net-
work interface for high availability links ,”
2022. https://lore.kernel.org/
netdev/20221118232639.13743-1-steve.
williams@getcruise.com/, access.: 2023-08.

[6] The kernel development community, “ eBPF Instruction
Set Specification, v1.0 ,” 2023. https://docs.
kernel.org/bpf/instruction-set.html,
access.: 2023-08.

[7] Kernel documentation, “ Running BPF programs from
userspace .” https://docs.kernel.org/bpf/
bpf_prog_run.html, access.: 2023-08.

[8] D. Libenzi, “ Improving (network) I/O performance
,” 2001. http://www.xmailserver.org/
linux-patches/nio-improve.html, access.:
2023-08.

[9] Intel, “ igc network device driver ,” 2018.
https://elixir.bootlin.com/linux/
v6.2.16/source/drivers/net/ethernet/
intel/igc, access.: 2023-08.

[10] P. Emelianov, “ Virtual ethernet device (tunnel) ,”
2007. https://lore.kernel.org/netdev/
46386DFB.7090109@sw.ru/#t, access.: 2023-
08.

[11] Colin Ian King et.al., “ stress-ng .” https://
github.com/ColinIanKing/stress-ng, ac-
cess.: 2023-08.

https://standards.ieee.org/ieee/802.1CB/5703/
https://standards.ieee.org/ieee/802.1CB/5703/
https://standards.ieee.org/ieee/802.1CB/5703/
https://www.rfc-editor.org/info/rfc8655
https://www.rfc-editor.org/info/rfc8655
https://lore.kernel.org/netdev/20210928114451.24956-1-xiaoliang.yang_1@nxp.com/
https://lore.kernel.org/netdev/20210928114451.24956-1-xiaoliang.yang_1@nxp.com/
https://lore.kernel.org/netdev/20210928114451.24956-1-xiaoliang.yang_1@nxp.com/
https://lore.kernel.org/netdev/20221118232639.13743-1-steve.williams@getcruise.com/
https://lore.kernel.org/netdev/20221118232639.13743-1-steve.williams@getcruise.com/
https://lore.kernel.org/netdev/20221118232639.13743-1-steve.williams@getcruise.com/
https://docs.kernel.org/bpf/instruction-set.html
https://docs.kernel.org/bpf/instruction-set.html
https://docs.kernel.org/bpf/bpf_prog_run.html
https://docs.kernel.org/bpf/bpf_prog_run.html
http://www.xmailserver.org/linux-patches/nio-improve.html
http://www.xmailserver.org/linux-patches/nio-improve.html
https://elixir.bootlin.com/linux/v6.2.16/source/drivers/net/ethernet/intel/igc
https://elixir.bootlin.com/linux/v6.2.16/source/drivers/net/ethernet/intel/igc
https://elixir.bootlin.com/linux/v6.2.16/source/drivers/net/ethernet/intel/igc
https://lore.kernel.org/netdev/46386DFB.7090109@sw.ru/#t
https://lore.kernel.org/netdev/46386DFB.7090109@sw.ru/#t
https://github.com/ColinIanKing/stress-ng
https://github.com/ColinIanKing/stress-ng

	Introduction
	Per-Packet Service Protection
	Operation example

	Frame Replication and Elimination for Reliability
	The XDP FRER
	Management
	eBPF packet manipulation
	Replication
	Elimination

	Evaluation
	Testbed
	Test network
	Scenarios

	Special note
	Conclusion

