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TCP Offload Engine (ToE)

e So, (fully) offload TCP to NIC

m save CPU cycles (TCP protocol handles at NIC, not host)

= save DMA (ACKs are from NIC, not host)

m if datais also on NIC, app=>NIC copies are also offloaded
e Do heavy-lifting on hardware
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TCP Offload Engine (ToE)

e So, (fully) offload TCP to NIC

m save CPU cycles (TCP protocol handles at NIC, not host)

m save DMA (ACKs are from NIC, not host)

m if datais also on NIC, app=>NIC copies are also offloaded
e Do heavy-lifting on hardware
e pbut ToE been un-recommended

= Linux never accepts TCP offload engines patch (2005)

= Deprecation of Microsoft Chimney (2017)
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attempt to upstream ToE in Linux

e 2005, Chelsio patch (ToE)
m Abstract framework for various (vendor-specific) ToE NICs
m Use Chelsio-TCP within Linux OS
e Reactions
m Security issue may not be fixed easily
m Linux features are not involved: e.g., netfilter is skipped.
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why ToE was rejected ?

1. Security updates 8. Linux features

2. Point-in-time solution 9. Requires vendor-specific tools
3. Different network behavior 10. Poor user support

4. Performance 1. Short term kernel maintenance
5
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. Hardware-specific limits 2. Long term user support
. Resource-based denial-of-service attackd 3. Long term kernel maintenance
. RFC compliance 14. Eliminates global system view
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reasons of ToE rejected

e Lack of featureset (no netfilter on ToE)
m 3.Different network behavior
= /.RFC compliance
m 8.Linux features
e Lack of governance (cannot control from
kernel developer)

m 1. Security updates
< C' @ https://wiki.linuxfoundation.org/networking/toe el v BR 2 UI'I
m 12.Long term user support
. . . Wiki
= 14.Eliminates global system view L 20
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protocol processing. Vendors have made modifications to 4 Linux to support TOE, and these changes have
been submitted changes for kernel inclusion but were rejected. This page describes the reasons why Linux
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what can we do ?

e it was around 2005, and it's 2023
e now NICs have Linux running inside (DPUs/SmartNICs)
e worthwhile to try ToE ?
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our attempt: kernel offload

e mino (a random, tentative name)

e pasic idea: decouple kernel from host

= Split kernel functions to (Smart)NICs

m Use user/kernel space memory abstraction via RDMA channel
= Unified/Unchanged view from userspace applications

e Benefits

no drastic ABI change btw/ user/kernel spaces
existing tools compatible (iproute2, /proc, /sys files)
clean abstraction, plug-gable kernel implementation
still software-based; thus updatable
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internals

split kernel at copy_{from,to} user()

Application

{ Application J [

no,args | 4rc
no, args rc
v T "' t [ e
(R)DMA Read (R)DMA Write
syscall copy_from_user() copy_to_user() Il
. syscall copy_from_user() copy_to_user()
Procedure call Memory copy operations
Remote Memory copy operations
Procedure call mapped to (R)DMA operations

typical syscall

syscall w/ kernel offload




Host part: minoc

e 1) hook syscall (LD_PRELOAD, zpoline*1)

e 2) copy syscall reg and buffers (*buf) to NIC (mrcc/(R)DMA)
m register buffers for RDMA read

e 3) wait for result (rc, errno) from rdma_get_recv_comp(3)

retuwrns
£

send(fd buf,len.) *buf send() App

(syscall hook) minoc(client)

[(R)DMA recv (R)IDMAisend minod

N

-
syscall ret,errno |Kernel

. copy_from_user() Jon Smart NIC

virtio-net ][ dpdkio I (vdpa) ][ (vfio+drv)

©®© Transmit

run mino client at a host device

*1 https://www.usenix.org/conference/atc23/presentation/yasukata




NIC part: minod

e 0) minod runs on userspace

= minod can run on kernel space (LKM)
e 1) wait for a trigger via char dev (/dev/usrcall)
e 2) process syscall via copy_from_user()
e 3) (regular syscall handling)

e 4) post result to callee by copy_to_user( )

send({d buf,len.) *buf send() App
S returns |
[(syscall hook) ) minoc(client)
©
]
@ argsl] 2 B O rc
>

[(R)DMA recv
.

syscall ret,errno |Kernel
copy_from_user() on Smart NIC

.

virtio-net ][ dpdkio I (vdpa) ][ (vfio+drv)

©®© Transmit

run mino daemon process(es) at the offload device
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multiple implementations of NIC
side

e A userspace process using LKL (Linux Kernel Library)

m | KL exists to *reuse Linux code in a different environment
e But not limited to use LKL

= Can be implemented as a kernel module

send({d buf,len.) *buf send() ] App
’ A returns
[ (syscall hook) ] minoc(client)
©
o
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_________________________________________________________ PCIe
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<

syscall ret,errno |Kernel
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- £
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® Transmit

on Smart NIC
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alternatives

-----------------------------------------------------

( ) (o ) ( ) (o )

Host [ Application }

' I10-TCP Control Plane
Tenant 1 Networking API ' Networking API (connection management, congestion/flow control,
' : reliable data transfer, error handling)
Network Stack At @ """""""" h
Network stack module NIC ...t 10| | Echo Packet
P Command | | Departure
................ ‘ ceeececseccaceaaa o Network Stack v Notification
Provider o N |O-TCP Data Plane
o _ ) (disk 1/0, delay correction,
(a). EXIStlng architecture (b) Network stack as a service data packet Creation/transfer)
P2PDMA
Data Stream
— SmartNIC — Host [ Clients J
Data-path Control-plane
Application The overview of 10-TCP stacks
Segment Generation & Interface Mgmt.
Transmission X
8 ) Connection Control
<Z( Loss Detection & Recovery 9

C ion Poli .
Payload Transfer g ® S p | It ke r n e | S

Application Notification H Application / libTOE

ros soces_| = netkernel (MTCP/Linux++ TCP impl.)
' = FlexTOE (TAS-based TCP impl.)
|O-TCP (mTCP-based TCP impl.)
e Chelsio T6

m 3 classical ToE (own TCP impl.)

e Niu et al., NetKernel: Making Network Stack Part of the Virutalized Infrastructure, ATC '20
e Shashidhara et al., FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism, NSDI '22
e Kim et al., Rearchitecting the TCP Stack for I/0-Offloaded Content Delivery, NSDI '23
e Terminator 6 ASIC https://www.chelsio.com/terminator-6-asic/

Flow Scheduling
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alternatives

netkernel flextoe iotcp chelsio minod

1. security update (®) (®) © 3
2. point-in-time solution ® ® () &
3. different behavior /0 3 e R
4. performance © © © © ?
5. hardware-specific limits = s 3 S S
6. DoS attacks ®/© R & & ©
7. RFC compliance /0 & & &
8. linux features /0 & & &
9. vendor-specific tools 2 i & & ©
10. poor user support 1/ 2 3 30 ©
11. (short-term) maintenance © © © 3 ©
12. long-term support (®) © © 3
13. (long-term) maintenance (®) © © &
14. global system view 5 ‘s S @ &

https://wiki.linuxfoundation.org/networking/toe
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benchmark setup

NIC Network
stack 200gbps

Eth Port

k Machine y

e 2 Machines (back-to-back)
e CPU: Xeon Gold 6326 CPU

e Bluefield-2 DPU: MBF2M345A-HECOT
m X8 Armv8 A/2 cores
m 16GB RAM

m 200G (QSFP56) 1port

4 )
CPU
Smart
NIC Network
Eth Port stack
Machi

L achine )

e Workload

= netperf TCP_STREAM

= netperf TCP_SENDFILE

m nginx + KTLS + SSL_sendfile
e Comparison

= Mmino Vv.s. (host)Linux
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1. netperf

- ) e sendfile should benefit a lot
App e on NIC side; run multi-LKL instances
sendmsg(3, msghdr, flags)

............................... e measure cpu usage by time command

Smart —

NIC Nerork
Network <———EthPort—|—stack

k Machine y
sendmsg(2)

4 N

A
CPU B
sendfile(3, 4, count)
Smart ® @
NIC Ne;cwcla(rk il
Network < R
k Machine y

sendfile(2)
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1. netperf (cont'd)

e goodput: always host > mino &
® Cpu usage
= mino: mostly zero
m host: 20-40% (sendmsg), decrease a bit (sendfile)
e sendfile
= does benefit on minod (kernel offload)
m NO stable benefit on host
180 [— host (sendmsg) i — 100
160 } === host (sendfile) || .

) mino (sendmsg)
140 - mino (sendfi@) """"""" m 1 75

120 b s T : SO S
oo b | |- 1M -

> b % B 50
L |

Goodput (Gbps)
|

{ 25

CPU utilization / thread (%)

. e |eft-Y-axis: Throughput (Gbps)
0 e right-Y-axis: CPU usage (%)

(num of core == num of parallel netperf processes)

Number of cores

17




2. nginx/wrk2, non-TLS/KTLS

( W
nginx
CPU 2

SSL_sendfile(3, 4, count)

N S N N N N N R R R L ) NN N R R S R

kTLS(encrypt)
Smart ), kﬁ—@
NIC Networ
wrk2 < tl Do stack extd

Machine

e nginx master (2023 Jun)
= buildw/ ——w1ith—openssl-opt=enable-ktls
= nginx.conf sendfile on;

= ] worker process
= openssl 3.0.9
e stressed with wrk2
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2. nginx/wrk2, non-TLS/KTLS

30 ' ' ' 100
host(http) ——

host(https) === —
mino(http) === | | ] -5
mino(https) ]

o o

25 }

{1 25

Throughput (Gbps)
CPU utilization (%)

300k 500k im e |eft-Y-axis: Throughput (Gbps)
File size (bytes) e right-Y-axis: CPU usage (%)

100k
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2. nginx/wrk2, non-TLS/KTLS

30 ' ' ' 100
host(http) ——

o5 host(https) ===

[ mino(http) == | | ] -
mino(https) | | .
20 b PO— |

Lo o

Throughput (Gbps)
CPU utilization (%)

{1 25

320k. 500k im e |eft-Y-axis: Throughput (Gbps)
File size (bytes) e right-Y-axis: CPU usage (%)

100k
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2. nginx/wrk2, non-TLS/KTLS

30 ' ' ' 100
host(http) ——

o5 host(https) —
[ mino(http) | | | | " -
mino(https) -

15 b 1 50
o J[b

O

{1 25

Throughput (Gbps)
CPU utilization (%)

o 500k m e |eft-Y-axis: Throughput (Gbps)
o 520 {ytes) e right-Y-axis: CPU usage (%)

A

78 o

e goodput: always host > mino
® Cpu usage
= mino: almost zero (but less load..)
= host: 20-40% (http), 25-70% bit (https)
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)

INX

2. nginw/wrk2 flamegraph (ng

Flame Graph

(profiled on NIC (minod))

e spent79.2% w/ crypto_aead_encrypt(

m can be improved by crypto-offload
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What we saw ?

netkernel

flextoe

iotcp chelsio

minod

security update

point-in-time solution

different behavior

performance

hardware-specific limits

DoS attacks
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N

Observations

. bottle neck: memory channel (host - NIC)

e netperf session on BF2 is way faster (~= 20Gbps)
e (both w/ LKL and BF2's kernel)

. BF2 (or DPU) is not powerful enough than x86 hosts
. satisfy the ideal ToE implementation

e relax CPU/memory usage on host
e software based implementation (updatable)
e but no performance gain
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To move forward...

e possible performance improvement ?
= \VDPA
= BF2 kernel instead of LKL
e More powerful, resource-rich DPU
= BF3?
= typical x86 machines as an offload devices (not NICs)
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Summary

e kernel offload by mino

m decrease CPU load to NIC

m copy_{from,to}_user across NIC and host
e transparency

m application: proper syscall hook

m kernel/network stack: split but based on the same codebase
e an approach to address ToE sucks

® put no performance gain so far (2023)
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