kernel offload with complete host
kernel functionalities

Ryo Nakamura (u-tokyo), Hajime Tazaki (iijlab)

Linux netdev conference 0x17 (2023)

TCP Offload Engine (ToE)

e So, (fully) offload TCP to NIC

m save CPU cycles (TCP protocol handles at NIC, not host)

= save DMA (ACKs are from NIC, not host)

m if datais also on NIC, app=>NIC copies are also offloaded
e Do heavy-lifting on hardware

Application
|| payload (64K) I— z
N syscall
TCPAP *
4 [Application]
|hdr| payload | user | payload (64K) | — z
Ethernet] * * .* [TCPAP] syscall
. e [e] S e
[NIC drivers * * * *
kernet g
e {4 W
device . hdr n kernel[o drvere] vl e i
[NIC DMA dovice (PavoaT(() EK))
g T e o
[har [¢ | T,
non TSO TOE [har 7 |

https://lwn.net/Articles/148697/
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/why-are-we-deprecating-network-performance-features-
kb4014193/ba-p/259053

https://lwn.net/Articles/148697/
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/why-are-we-deprecating-network-performance-features-kb4014193/ba-p/259053
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/why-are-we-deprecating-network-performance-features-kb4014193/ba-p/259053

TCP Offload Engine (ToE)

e So, (fully) offload TCP to NIC

m save CPU cycles (TCP protocol handles at NIC, not host)

m save DMA (ACKs are from NIC, not host)

m if datais also on NIC, app=>NIC copies are also offloaded
e Do heavy-lifting on hardware
e pbut ToE been un-recommended

= Linux never accepts TCP offload engines patch (2005)

= Deprecation of Microsoft Chimney (2017)

Application

userL 4 I < C 8 https://techcommunity.microsoft.com/t5/core-infrastructure-and-security... 4 Ub
| payload (64K) I—
(N syscall = B2 Microsoft Sea
TCP/IP * [ﬂ Back to Blog < Newer Article Older Article >
- / Application] | A LWN Uger: (ohajime) Password: (~eere) (Log) | (Subscribe) (Register)
1 "‘l] 1jime assword: g 1N ubscribe egister’
|hdr | payload | |¢7%% et

- \ =il L) z 1New’24m;m o Linux and TCP offload engines Wh . K Yeseh
: : [Posted August 22, 2005 by corbet] y Are We Deprecatlng Networ v

Ethernet [TCPAP]
Content
L) syscall WL Eattion _ _ . - - Performance Features (KB4014193)? Last upd:
Al The TCP/IP protocol suite takes a certain amount of CPU power to implement. So it is not surprising Updated
e that network adapter manufacturers have long been adding protocol support to their cards. This support P
Search P g g P! pp 'pp
h‘ CPU S can vary from the simple (checksumming of packets, for example) through to full TCP/IP By @ Brandon Wilson (SR CE)
Kernel implementations. An adapter with full protocol support is often called a TCP offload engine or TOE.
Eth t Securif P P P e ¢ Published Sep 20 2018 06:43 AM o™ 1,218 Vi
erne | Security ublished Sep : o 1, iews
) Distributions Linux has never supported the TOE features of any network cards. For some time, there had not even
H ¢ been much discussion of TOE support. The topic has returned, however, with this patch adding TOE
i Events calend: PP 2 s s this p g
NIC drivers s Support which was posted by Scott Bardone of Chelsio Communications. This TOE patch is clearly First published on TechNet on Jun 13, 2017 Labels
} 7/ intended to support Chelsio's line of network adapters, but it has been coded as a more generic "open Hello, Michael C. Bazarewsky here again, with another short clarification post. In Februar
ke' rier TOE" framework. The Chelsio folks would very much like to see this patch merged for the 2.6.14 kernel ' . Y gain. post. Y
A/ LWN FAQ Y P & . o
[NIC drivers] i 1 - release. we published Features that are removed or deprecated in Windows 10 Creators Update (KB
7'\ | WA ;) < part: Michae
H v iee Those who are curious about the TOE patch can go in and look at the code; it is relativel 4014193). Someone | follow on Twitter noticed this part:
evice kernel Edition P 8 y
I R the Kernel straightforward. At its core, it creates a new type of extended network device (struct toedev) with an
) [Etm e Sene additional set of methods: TCPChimney N
NIC device | ERES
int (*open)(struct toedev *dev);
NIC int (*close)(struct toedev *dev); IPsec task offload X
/

int (*can_offload)(struct toedev *dev, struct sock *sk);
int (*connect)(struct toedev *dev, struct sock *sk);
int (*send)(struct toedev *dev, struct sk _buff *skb);

int (*recv)(struct toedev *dev, struct sk buff **skb, int n); The X's here indicate those features are deprecated. This occasionally comes up still on
int (*ctl)(struct toedev *dev, unsigned int req, void *data); .
void (*neigh_update) (struct net_device *lldev, Twitter, with at least one person seeing this as a real issue... But | was curious — what was
struct toedev *dev, § . 5
struct neighbour *neigh, int f£1); the driving factor behind this deprecation? After all, you'd expect that if features improve

non TSO

. . i o .
There are various hooks sprinkled through the TCP code to detect when a TOE-capable device is being performance reliably, and are in heavy use, we wouldn't deprecate them, right? Well, it

https://lwn.net/Articles/148697/
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/why-are-we-deprecating-network-performance-features-
kb4014193/ba-p/259053

https://lwn.net/Articles/148697/
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/why-are-we-deprecating-network-performance-features-kb4014193/ba-p/259053
https://techcommunity.microsoft.com/t5/core-infrastructure-and-security/why-are-we-deprecating-network-performance-features-kb4014193/ba-p/259053

attempt to upstream ToE in Linux

e 2005, Chelsio patch (ToE)
m Abstract framework for various (vendor-specific) ToE NICs
m Use Chelsio-TCP within Linux OS
e Reactions
m Security issue may not be fixed easily
m Linux features are not involved: e.g., netfilter is skipped.

TCP UDP, Multicast & Trace Applications

' " & A
User v v v

Space WD-TOE " TOE || WD-UDP, WD-QP, & WD-Trace Libs

cssssssscsscsssd R T T T

Kernel y
Kernel Bypass KernelHost Stack
Space UDP/TCP
A A A
Y L
Chelsio Adapter
Hardware
TCP Offload Queues Raw Ethernet Queues NICQueues
TCP Offload Engine RDMA Engine NICEngine

https://www.chelsio.com/wp-content/themes/chelsio/images/fsi_fig1.png

https://www.chelsio.com/wp-content/themes/chelsio/images/fsi_fig1.png

why ToE was rejected ?

1. Security updates 8. Linux features

2. Point-in-time solution 9. Requires vendor-specific tools
3. Different network behavior 10. Poor user support

4. Performance 1. Short term kernel maintenance
5

6

7

\

/

. Hardware-specific limits 2. Long term user support
. Resource-based denial-of-service attackd 3. Long term kernel maintenance
. RFC compliance 14. Eliminates global system view

& C' & https://wiki.linuxfoundation.org/networking/toe aQa % ¢

THE e :
'|_ | LINUX "
FOUNDATION
Trace: - toe

toe

& TCP Offload Engine (TOE) is the name for allowing the network driver to do part or all of the % TCP/IP
protocol processing. Vendors have made modifications to % Linux to support TOE, and these changes have
been submitted changes for kernel inclusion but were rejected. This page describes the reasons why Linux
engineers currently feel that full network stack offload (TCP Offload Engine, TOE) has little merit.

Contents

= % 1 Security updates

= 4 2 Point-in-time solution

= % 3 Different network behavior

= 44 Performance

= % 5 Hardware-specific limits

= 4 6 Resource-based denial-of-service attacks
= & 7 RFC compliance

= 4 8 Linux features

= % 9 Requires vendor-specific tools

= & 10 Poor user support

= & 11 Short term kernel maintenance
= % 12 Long term user support

= % 13 Long term kernel maintenance
= % 14 Eliminates global system view

Security updates

A TOE net stack is closed source firmware. Linux engineers have no way to fix security issues that arise. As a result, ¢

https.//wiki.linuxfoundation.org/networking/toe

https://wiki.linuxfoundation.org/networking/toe

reasons of ToE rejected

e Lack of featureset (no netfilter on ToE)
m 3.Different network behavior
= /.RFC compliance
m 8.Linux features
e Lack of governance (cannot control from
kernel developer)

m 1. Security updates
< C' @ https://wiki.linuxfoundation.org/networking/toe el v BR 2 UI'I
m 12.Long term user support
. . . Wiki
= 14.Eliminates global system view L 20

e Different ecosystem (lifetime:
d e Ca d eS <: > feW yea rS) ioTCeP Offload Engine (TOE) is the name for allowing the network driver to do part or all of the % TCP/IP

protocol processing. Vendors have made modifications to 4 Linux to support TOE, and these changes have
been submitted changes for kernel inclusion but were rejected. This page describes the reasons why Linux

u 1 . S h O rt te r m ke r n e | m a i n te n a n C e engineers currently feel that full network stack offload (TCP Offload Engine, TOE) has little merit.

Contents

m 12.Long term user support

= 4 2 Point-in-time solution
= ‘4 3 Different network behavior

= 13.Long term kernel maintenance :

= 4 6 Resource-based denial-of-service attacks

\

\

\

e Different TCP implementation (vendor

= ‘4 10 Poor user support

1 1 = & 11 Short term kernel maintenance
S p e C I I C = & 12 Long term user support
= % 13 Long term kernel maintenance

= 4 14 Eliminates global system view

. 8.Linux features Security updates
[| 9 . Re q u i re S V e n d O r_ S p e C if i C t O O | S ATOE net stack is closed source firmware. Linux engineers have no way to fix security issues that arise. As a result, «

https://wiki.linuxfoundation.org/networking/toe

https://wiki.linuxfoundation.org/networking/toe

what can we do ?

e it was around 2005, and it's 2023
e now NICs have Linux running inside (DPUs/SmartNICs)
e worthwhile to try ToE ?

CONNECTA-6 DR
NETWORK INTERFACE

I\ ERMCORES
W e

ACCELERATION | (e——
‘ ENGINE. * 1 pOEGENAD
=)o\ SITCH
ST WSy =
= ORI MEMORY INTERFACE |

|-

https://www.hpcwire.com/2021/12/21/nvidia-touts-bluefield-2-performance-disputes-fungible-claim-are-dpu-wars-ahead/

https://www.hpcwire.com/2021/12/21/nvidia-touts-bluefield-2-performance-disputes-fungible-claim-are-dpu-wars-ahead/

our attempt: kernel offload

e mino (a random, tentative name)

e pasic idea: decouple kernel from host

= Split kernel functions to (Smart)NICs

m Use user/kernel space memory abstraction via RDMA channel
= Unified/Unchanged view from userspace applications

e Benefits

no drastic ABI change btw/ user/kernel spaces
existing tools compatible (iproute2, /proc, /sys files)
clean abstraction, plug-gable kernel implementation
still software-based; thus updatable

e

o -
! I
; X

! |
' |
ernel,

internals

split kernel at copy_{from,to} user()

Application

{ Application J [

no,args | 4rc
no, args rc
v T "' t [e
(R)DMA Read (R)DMA Write
syscall copy_from_user() copy_to_user() Il
. syscall copy_from_user() copy_to_user()
Procedure call Memory copy operations
Remote Memory copy operations
Procedure call mapped to (R)DMA operations

typical syscall

syscall w/ kernel offload

Host part: minoc

e 1) hook syscall (LD_PRELOAD, zpoline*1)

e 2) copy syscall reg and buffers (*buf) to NIC (mrcc/(R)DMA)
m register buffers for RDMA read

e 3) wait for result (rc, errno) from rdma_get_recv_comp(3)

retuwrns
£

send(fd buf,len.) *buf send() App

(syscall hook) minoc(client)

[(R)DMA recv (R)IDMAisend minod

N

-
syscall ret,errno |Kernel

. copy_from_user() Jon Smart NIC

virtio-net][dpdkio I (vdpa)][(vfio+drv)

©®© Transmit

run mino client at a host device

*1 https://www.usenix.org/conference/atc23/presentation/yasukata

NIC part: minod

e 0) minod runs on userspace

= minod can run on kernel space (LKM)
e 1) wait for a trigger via char dev (/dev/usrcall)
e 2) process syscall via copy_from_user()
e 3) (regular syscall handling)

e 4) post result to callee by copy_to_user()

send({d buf,len.) *buf send() App
S returns |
[(syscall hook)) minoc(client)
©
]
@ argsl] 2 B O rc
>

[(R)DMA recv
.

syscall ret,errno |Kernel
copy_from_user() on Smart NIC

.

virtio-net][dpdkio I (vdpa)][(vfio+drv)

©®© Transmit

run mino daemon process(es) at the offload device

10

multiple implementations of NIC
side

e A userspace process using LKL (Linux Kernel Library)

m | KL exists to *reuse Linux code in a different environment
e But not limited to use LKL

= Can be implemented as a kernel module

send({d buf,len.) *buf send()] App
’ A returns
[(syscall hook)] minoc(client)
©
o
@ args|] (2] i O rc
=
o)
___ PCIe
[(R)DMA recv (R)DMA send] minod
<

syscall ret,errno |Kernel
copy_from_user()

- £
virtio-net][dpdkio I (vdpa)][(vfio+drv)

® Transmit

on Smart NIC

"

alternatives

() (o) () (o)

Host [Application }

' I10-TCP Control Plane
Tenant 1 Networking API ' Networking API (connection management, congestion/flow control,
' : reliable data transfer, error handling)
Network Stack At @ """""""" h
Network stack module NIC ...t 10| | Echo Packet
P Command | | Departure
................ ‘ ceeececseccaceaaa o Network Stack v Notification
Provider o N |O-TCP Data Plane
o _) (disk 1/0, delay correction,
(a). EXIStlng architecture (b) Network stack as a service data packet Creation/transfer)
P2PDMA
Data Stream
— SmartNIC — Host [Clients J
Data-path Control-plane
Application The overview of 10-TCP stacks
Segment Generation & Interface Mgmt.
Transmission X
8) Connection Control
<Z(Loss Detection & Recovery 9

C ion Poli .
Payload Transfer g ® S p | It ke r n e | S

Application Notification H Application / libTOE

ros soces_| = netkernel (MTCP/Linux++ TCP impl.)
' = FlexTOE (TAS-based TCP impl.)
|O-TCP (mTCP-based TCP impl.)
e Chelsio T6

m 3 classical ToE (own TCP impl.)

e Niu et al., NetKernel: Making Network Stack Part of the Virutalized Infrastructure, ATC '20
e Shashidhara et al., FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism, NSDI '22
e Kim et al., Rearchitecting the TCP Stack for I/0-Offloaded Content Delivery, NSDI '23
e Terminator 6 ASIC https://www.chelsio.com/terminator-6-asic/

Flow Scheduling

12

alternatives

netkernel flextoe iotcp chelsio minod

1. security update (®) (®) © 3
2. point-in-time solution ® ® () &
3. different behavior /0 3 e R
4. performance © © © © ?
5. hardware-specific limits = s 3 S S
6. DoS attacks ®/© R & & ©
7. RFC compliance /0 & & &
8. linux features /0 & & &
9. vendor-specific tools 2 i & & ©
10. poor user support 1/ 2 3 30 ©
11. (short-term) maintenance © © © 3 ©
12. long-term support (®) © © 3
13. (long-term) maintenance (®) © © &
14. global system view 5 ‘s S @ &

https://wiki.linuxfoundation.org/networking/toe

13

Demo

benchmark setup

NIC Network
stack 200gbps

Eth Port

k Machine y

e 2 Machines (back-to-back)
e CPU: Xeon Gold 6326 CPU

e Bluefield-2 DPU: MBF2M345A-HECOT
m X8 Armv8 A/2 cores
m 16GB RAM

m 200G (QSFP56) 1port

4)
CPU
Smart
NIC Network
Eth Port stack
Machi

L achine)

e Workload

= netperf TCP_STREAM

= netperf TCP_SENDFILE

m nginx + KTLS + SSL_sendfile
e Comparison

= Mmino Vv.s. (host)Linux

15

1. netperf

-) e sendfile should benefit a lot
App e on NIC side; run multi-LKL instances
sendmsg(3, msghdr, flags)

............................... e measure cpu usage by time command

Smart —

NIC Nerork
Network <———EthPort—|—stack

k Machine y
sendmsg(2)

4 N

A
CPU B
sendfile(3, 4, count)
Smart ® @
NIC Ne;cwcla(rk il
Network < R
k Machine y

sendfile(2)

16

1. netperf (cont'd)

e goodput: always host > mino &
® Cpu usage
= mino: mostly zero
m host: 20-40% (sendmsg), decrease a bit (sendfile)
e sendfile
= does benefit on minod (kernel offload)
m NO stable benefit on host
180 [— host (sendmsg) i — 100
160 } === host (sendfile) || .

) mino (sendmsg)
140 - mino (sendfi@) """"""" m 1 75

120 b s T : SO S
oo b | |- 1M -

> b % B 50
L |

Goodput (Gbps)
|

{ 25

CPU utilization / thread (%)

. e |eft-Y-axis: Throughput (Gbps)
0 e right-Y-axis: CPU usage (%)

(num of core == num of parallel netperf processes)

Number of cores

17

2. nginx/wrk2, non-TLS/KTLS

(W
nginx
CPU 2

SSL_sendfile(3, 4, count)

N S N N N N N R R R L) NN N R R S R

kTLS(encrypt)
Smart), kﬁ—@
NIC Networ
wrk2 < tl Do stack extd

Machine

e nginx master (2023 Jun)
= buildw/ ——w1ith—openssl-opt=enable-ktls
= nginx.conf sendfile on;

=] worker process
= openssl 3.0.9
e stressed with wrk2

18

2. nginx/wrk2, non-TLS/KTLS

30 ' ' ' 100
host(http) ——

host(https) === —
mino(http) === | |] -5
mino(https)]

o o

25 }

{1 25

Throughput (Gbps)
CPU utilization (%)

300k 500k im e |eft-Y-axis: Throughput (Gbps)
File size (bytes) e right-Y-axis: CPU usage (%)

100k

19

2. nginx/wrk2, non-TLS/KTLS

30 ' ' ' 100
host(http) ——

o5 host(https) ===

[mino(http) == | |] -
mino(https) | | .
20 b PO— |

Lo o

Throughput (Gbps)
CPU utilization (%)

{1 25

320k. 500k im e |eft-Y-axis: Throughput (Gbps)
File size (bytes) e right-Y-axis: CPU usage (%)

100k

19

2. nginx/wrk2, non-TLS/KTLS

30 ' ' ' 100
host(http) ——

o5 host(https) —
[mino(http) | | | | " -
mino(https) -

15 b 1 50
o J[b

O

{1 25

Throughput (Gbps)
CPU utilization (%)

o 500k m e |eft-Y-axis: Throughput (Gbps)
o 520 {ytes) e right-Y-axis: CPU usage (%)

A

78 o

e goodput: always host > mino
® Cpu usage
= mino: almost zero (but less load..)
= host: 20-40% (http), 25-70% bit (https)

19

)

INX

2. nginw/wrk2 flamegraph (ng

Flame Graph

(profiled on NIC (minod))

e spent79.2% w/ crypto_aead_encrypt(

m can be improved by crypto-offload

20

What we saw ?

netkernel

flextoe

iotcp chelsio

minod

security update

point-in-time solution

different behavior

performance

hardware-specific limits

DoS attacks

21

N

Observations

. bottle neck: memory channel (host - NIC)

e netperf session on BF2 is way faster (~= 20Gbps)
e (both w/ LKL and BF2's kernel)

. BF2 (or DPU) is not powerful enough than x86 hosts
. satisfy the ideal ToE implementation

e relax CPU/memory usage on host
e software based implementation (updatable)
e but no performance gain

22

To move forward...

e possible performance improvement ?
= \VDPA
= BF2 kernel instead of LKL
e More powerful, resource-rich DPU
= BF3?
= typical x86 machines as an offload devices (not NICs)

23

Summary

e kernel offload by mino

m decrease CPU load to NIC

m copy_{from,to}_user across NIC and host
e transparency

m application: proper syscall hook

m kernel/network stack: split but based on the same codebase
e an approach to address ToE sucks

® put no performance gain so far (2023)

24

kernel offload with complete host
kernel functionalities

Ryo Nakamura (u-tokyo), Hajime Tazaki (iijlab)

Linux netdev conference 0x17 (2023)

