Assessing the impact of Linux networking on CPU consumption

Abstract

As network interfaces in the data-center get faster and faster,
and an increasing portion of services is implemented in soft-
ware, we wonder how many CPU cycles our servers are dedi-
cating to handling network traffic. In fact, real world measure-
ments always represent the first step to evaluate whether new
optimizations are needed, in particular given the claim, com-
ing from some SmartNIC vendors, that this cost can be up to
30% of the total amount of CPU cycles spent in a data center.
This paper describes the design and functionality of a novel
tool that enables in depth observation and monitoring of the
Linux kernel’s networking stack in real-time, through eBPF
instrumentation of its main RX and TX entry-points. We also
show how we can build a dynamic breakdown of the individ-
ual components on the fly while keeping the overhead down by
collecting and analyzing CPU stack traces.

Introduction

Measuring a system’s performance is key to understanding
its bottlenecks and discovering possible optimizations. How-
ever, no dedicated tool is currently available to target the net-
work sub-system of Linux-based hosts, which has tradition-
ally forced system administrators to rely on broader, less fo-
cused diagnostic strategies to fine tune their servers.

Indeed, among the different network-oriented analysis
techniques available in the literature, some require intrusive
kernel modifications ([4]], [S]) — and are thus hardly suit-
able for general-purpose measurements — while others rely
on data-hungry hardware profilers, which make it impossible
to deploy in a real-time, continuous manner (e.g., [3]).

This work presents Netto (https://github.com/
miolad/netto), anew tool based on eBPF [8] which aims
at filling this gap. This paper is structured as follows. Sec-
tion [Architecture and implementation| introduces the design
choices and implementation details of the tool; Section
shows some preliminary results in controlled environ-
ments; finally, Section [Conclusions and future work| summa-
rizes the obtained achievements and discusses possible future
directions.

Architecture and implementation

In order to accurately measure the CPU time spent on net-
working tasks, we use eBPF probes placed at the entry and re-
turn addresses of the Linux functions that represent the main

entry-points to in-kernel networking. By relying on eBPF for
the instrumentation, we can ensure compatibility across dis-
tributions without requiring inconvenient patches to the ker-
nel or device drivers, while maintaining an acceptable level
of runtime overhead.

The specific networking entry-points that we identified —

which we call “events” —, together with the associated C
functions in the kernel source are the following:
e NET_RX_SOFTIRQ ([I1, Version 6.4.8, Func-

tion net_rx_action,net/core/dev.c, Line 6661]):
poll NAPI-based drivers and handle incoming raw packets;
batches up to 300 skbuff's per invocation

e NET_TX_SOFTIRQ ([I1, Version 6.4.8, Func-
tion net_tx_action,net/core/dev.c, Line 5018]):
occasionally flush TX queues during high load scenarios

e socket receive (|11, Version 6.4.8, Func-
tion sock_recvmsg, net/socket.c, Line 1036]):
common crossing point for syscalls such as read, recv,

¢ socket send ([IL1L Version 6.4.8, Func-
tion sock_sendmsg, net/socket.c, Line 742]):
common crossing point for syscalls such as write,
send,...

We use the available softirg entry and
softirg_exit tracepoints for the first two events, in
the sake of better efficiency, and rely on BPF trampolines
[7] instead of kprobes for the remaining ones, for the same
reason. The last two events also cover asynchronous variants
of the input/output syscalls, including the new io-uring [12]]
interface.

Every exit BPF program accumulates the difference in its
invocation timestamp with that of its respective entry into an
event-specific, per-cpu, monotonically increasing nanosec-
ond counter that is shared with the user space controller. The
control loop runs at a frequency of 2 Hz, reads the most up-
to-date values from the BPF map and updates the user-facing
report.

To correctly handle preemption, we mark each task with
a flag that encodes the currently running event, and instru-
ment the sched_switch tracepoint to be notified of task
switches: each such occurrence is thus treated as an exit from
the active event on the outgoing task and a concurrent en-

https://github.com/miolad/netto
https://github.com/miolad/netto

try into the active event on the incoming task. Note that this
works because Linux’ softirgs are not preemptible.

Event breakdown

One of the key capabilities of Netto is providing an estimated
breakdown of the cost of the network “events” into their main
components. With this feature — currently implemented for
the NET_RX_SOFTIRQ event — we can approximate the
cost of the individual network functions of a Linux host, such
as bridging or forwarding.

We achieve this by performing real time profiling of the
kernel threads: we instrument a Linux perf-event [[6] with
an eBPF program to capture the kernel-side CPU stack trace
on all cores at a set frequency (1kHz has been shown to
provide both very low overhead and a satisfactory perceived
accuracy); these traces are then efficiently brought to the
user-space controller through a double-buffered mmaped ar-
ray map, where they are matched against a set of predefined
kernel symbols.

By introducing an approximation in the form of a sampling
frequency, we are able to measure per-packet metrics, which
would be prohibitively expensive for high load scenarios if
done with traditional eBPF probes instead.

Results

To demonstrate the quality of the analysis, we tested the tool
against a set of controlled workloads. Our testbed consists
of two identical Intel Core i7 6700-based machines running
kernel 5.15 LTS, directly connected at 40 Gbps through a pair
of Intel XL710 NICs.

iperf3 receive
The two systems were set up to perform iperf3 [1] TCP and
UDP throughput tests, and Netfo was loaded on the receiver.

Figure [T] shows a snapshot of the real time generated CPU
cost diagram during the transfers. In the case of TCP, virtu-
ally all kernel time (which is represented by the central bar)
is spread between reads and the NET_RX_SOFTIRQ. Con-
versely, for UDP, a large portion of the kernel’s total time is
reported as “other”, which in this case hides complementary
system calls found in most I/O loops like select, and the
generic syscall entry and exit overhead.

The reason why these components have a much larger im-
pact in UDP is syscall frequency: the UDP transfer pushes
about 700k system calls every second (around seven times as
many as those generated by the TCP test), which also consti-
tutes a severe bottleneck to the achieved throughput.

The bandwidth overhead associated to the real time anal-
ysis, as measured at the receiver, is about 6% for UDP. In
TCP, where the only bottleneck is the physical link’s speed,
no negative impact could be observed.

Google’s “Online Boutique” microservices demo

For a test more representative of the typical web server work-
load, we deployed Google’s “Online Boutique” 2] microser-
vices demo on a KinD [9] cluster and exposed the web fron-
tend through a MetalLB [[10] load balancer. On the other ma-
chine, Google’s provided loadgenerator microservice

100%
other
NF conntrack

NF ingress

RX softirq GRO overhead

idle

Driver poll
RX syscalls D

TCP

100%

Local delivery/v4

other

idle

NF conntrack

NF ingress

GRO overhead

Driver poll

RX softirg

user

RX syscalls

0%

UDP

Figure 1: Measured networking cost during an iperf3 TCP
(top) and UDP (bottom) receive tests.

was used to stress the cluster at a rate of about 1000 requests
per second. Figure 2] depicts the results.

The graph indicates that the overall CPU time is distributed
approximately evenly among user and kernel modes, and that
in-kernel networking only accounts to a relatively limited por-
tion of the total system time; otherwise, the kernel spends sig-
nificant time in a io-uring SQPOLL burner thread (indicated
as “IO workers” in the graph).

Conclusions and future work

In this paper we presented a new, eBPF-based tool to aid mon-
itoring and diagnosis of the networking subsystem in Linux
hosts; we have also shown how a sampled estimate approach
can allow the effective observation of hot paths in the kernel
code without a detrimental impact on system performance.
On the other hand, the design choice of only considering
kernel networking means that any user-space network func-
tion is excluded from the analysis. This includes QUIC, TLS

100%

other

idle
Local delivery/v4

Forwarding/v4

user

I0 workers
NF prerouting/v4
RX softirq NF conntrack

NF ingress

TX syscalls

Driver poll

Figure 2: Measured networking cost while stress-testing
Google’s “Online Boutique”.

and DPDK, as well as application-level proxies that are be-
coming so common in the cloud-native world.

Finally — considering possible future developments —
one of the most promising perspectives involves hooking the
dynamic analysis provided by our tool to system management
applications that can utilize the current networking load to
drive resource allocation algorithms.

References
[1] Dugan, J.; Elliott, S.; Mah, B. A.; Poskanzer, J.; and

Prabhu, K. iperf3 throughput testing tool. https:
//iperf.fr/l Accessed: 2023-08-15.

[2] Google. “Online Boutique” microser-
vices demo. https://github.com/

GoogleCloudPlatform/microservices—demo.

Accessed: 2023-08-16.

[3] Haecki, R.; Mysore, R. N.; Suresh, L.; Zellweger, G.;
Gan, B.; Merrifield, T.; Banerjee, S.; and Roscoe, T. 2022.
How to diagnose nanosecond network latencies in rich
end-host stacks. In 19th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 22),
861-877. Renton, WA: USENIX Association.

[4] Peter, S.; Li, J.; Zhang, 1.; Ports, D. R. K.; Woos, D.;
Krishnamurthy, A.; Anderson, T.; and Roscoe, T. 2014.
Arrakis: The operating system is the control plane. In
11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), 1-16. Broomfield, CO:
USENIX Association.

[5] Rizzo, L. 2012. netmap: A novel framework for fast
packet I/0. In 2012 USENIX Annual Technical Confer-
ence (USENIX ATC 12), 101-112. Boston, MA: USENIX
Association.

[6] Starovoitov, A. BPF perf-event Linux
patch. https://lore.kernel.org/lkml/

1472680243-1326608-3-git—-send-email—-ast@

fb.com/. Accessed: 2023-08-14.

[7] Starovoitov, A. BPF trampolines Linux patch. https:
//lore.kernel.org/bpf/20191114185720.
1641606-5-ast@kernel.org/. Accessed: 2023-
08-14.

[8] The eBPF community. eBPF. https://ebpf.io/.
Accessed: 2023-07-17.

[9] The Kubernetes Authors. KinD: Kubernetes in Docker.
https://kind.sigs.k8s.io/. Accessed: 2023-
08-16.

[10] The MetalLB Contributors. MetalLB. https://
metallb.universe.tf/. Accessed: 2023-08-16.

[11] Torvalds, L. Linux. https://kernel.orqg. Ac-
cessed: 2023-08-09.

[12] Wikipedia contributors. io_uring - Wikipedia, The
Free Encyclopedia. https://en.wikipedia.org/
wiki/Io_uring. Accessed: 2023-22-08.

https://iperf.fr/
https://iperf.fr/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://lore.kernel.org/lkml/1472680243-1326608-3-git-send-email-ast@fb.com/
https://lore.kernel.org/lkml/1472680243-1326608-3-git-send-email-ast@fb.com/
https://lore.kernel.org/lkml/1472680243-1326608-3-git-send-email-ast@fb.com/
https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org/
https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org/
https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org/
https://ebpf.io/
https://kind.sigs.k8s.io/
https://metallb.universe.tf/
https://metallb.universe.tf/
https://kernel.org
https://en.wikipedia.org/wiki/Io_uring
https://en.wikipedia.org/wiki/Io_uring

	Introduction
	Architecture and implementation
	Event breakdown

	Results
	iperf3 receive
	Google's ``Online Boutique'' microservices demo

	Conclusions and future work

