
Leverage Homa: Enhancing Homa Linux for
Efficient RPC Transportation

Presenter: Xiaochun Lu, Zijian Zhang

Agenda

•Homa Congestion Control introduction

•Limitation of Homa in RPC context

•Homa Congestion Control enhancements

•Homa RPC streaming enhancements

•Performance evaluation

•Future improvements

•Conclusion

•Q&A

2

RPC Transport Protocols in Data Centers: TCP,
RDMA, and Homa

TCP (Transmission Control Protocol)
○ Widely supported
○ High Latency on short messages in mixed workloads

RDMA (Remote Direct Memory Access)
○ High throughput and Low latency
○ Limitation on number of concurrent connections
○ Requires RDMA-capable network and switch

Homa:Specifically designed for Data center RPC framework
○ High scalability
○ Low latencies
○ High throughputs

3/34

Homa protocol introduction

• Primarily designed for datacenter networks characterized by extremely low
latencies.

• Message based protocol.

• Connectionless: no connection cost, no long life connection state.

• Ensure reliable transmission through retransmission mechanism.

• Homa implements unary RPC.

4/34

Receiver Driven Congestion Control

Scheduled packets
Unscheduled packets
(enough to cover RTT)

RPC message

sender receiver
Grant

Scheduled Packet

Unscheduled Packet

Receiver collects incoming
msg info and give grants to
senders

1

2

3

5/34

TOR

Preset Fixed Window (RTTBytes)

Scheduled
packets

RPC messages

sender receiverGrant

Granted Packet

Unscheduled Packet

Unscheduled packets (< = RTTBytes)

new grant offset= received + RTTBytes

6/34

Overcommit Grants for Maximum Throughput

Receiver

Grant

Grant

Sender n

Sender1

max_incomming = RTT_bytes * max_overcommits .

sSender2

max_covercommit = 8

Potential buffer build up
due to overcommit

Granted Packet

Ungranted Packet

Grant

7/34

Send Side SRPT and Pacing

RPC Throttle list

NIC

Granted Packet

Unscheduled Packet

RPC2
3

2

1RPC3

pacer
RPC1

Scheduled Packet

Pacer thread monitors the NIC backlog and
transmits Packets from the throttled list to nic in
SRPT order.

priority

8/34

Limitations of Homa as RPC transport protocol

Inefficient Pipelining for Large Message
• Homa's message-based interface, while ensuring complete message delivery, hinders efficient

pipelining, resulting in decreased throughput for larger RPC messages(size >50k) compared to TCP

Non-standard Socket API interface
• It is not easy to map Homa RPC ID to existing RPC framework.
• No long lived RPC: A RPC stream RPC is consisted of many Homa RPCs, which incurs the overhead

of creating and reclaiming them.

9

RTTbytes Challenge

Performance sensitive to RTTBytes config
● Single preset value is not enough for diverse RTT and receiver downlink bandwidth.
● Real-time per-peer RTT detection is essential

Weak Congestion Control when RTT is large than 20 us
● Large RTTBytes inviting incast congestion
● Low RTTBytes is not able to cover RTT

10

Single , Static Congestion Window is Insufficient

•Unscheduled Window and Scheduled Window(for granting) need different values
• Serves different purpose.
• Unscheduled window is based on peer side bandwidth. It defines maximum bytes of packets allow to
be sent out without permission.

• Grant window is used for giving grant to scheduled bytes, which works in more predictable way.

•RTT changes with network condition, which demands dynamic adjustable window

11

Can Homa Traffic Coexisting with TCP?

Not intentionally designed to share downlink with other protocol
In practice , network resource needs be shared with other protocols like TCP, need explore whether two traffics
can coexist.

How Homa detect congestion due to coexisting of other type of traffic ?

12/34

Unscheduled Packet Incasting

Receiver

sender n

sender1

sender2

Buffer build up when there are
multiple unschedled senders

When Detecting Congestion, it's essential to dynamically
reduce unscheduled Window to prevent congestion

Unscheduled
Packet

13

Homa Congestion Control Enhancements

Dynamic Per Peer Adjustable Window

• Dynamic per-peer RTT detection.

• RTT-informed congestion detection.

• Adaptive per-peer adjustable window based on congestion

14

Dynamic Peer RTT Detection

Homa softIRQ Homa softIRQ

RTT_PROBE

RTT_Probe_Resp (t1, my_link_mbps)

(t1, my_link_mbps)

timestamp duplicated

Timestamp t1

Timestamp
t2

peer_rtt_min = min(peer_rtt_min, peer_rtt_recent,..)

peer_rtt_recent = t2 -t1

peer_rtt_min will be accurate over
time: using peer_rtt_min to
calculate RTT Bytes

Client Server

15

RTT Informed Congestion Detection

peer_rtt_min: The minimum RTT value detected over time for this peer.

peer_rtt_high: The high threshold of RTT.

 set peer_rtt_high to 8 * peer_rtt_min

 IF peer_rtt_recent > peer_rtt_high
 set congestion to true
 ENDIF

16

Receiver - Scheduled Window

Using rtt_grant as reference RTT to calculate scheduled window for grant:

peer_rtt_grant = 3 * peer_rtt_min;

scheduled_window = peer_rtt_grant * local_link_mps / 8 ;

max_incomming = scheduled_window *max_overcommit;

17/34

Sender - Dynamic adjusting unscheduled window

 8 * peer_rtt_min

4 * peer_rtt_min

18

Unscheduled Ratio

19

Unscheduled_ratio = Total unscheduled packets / Total length of all messages

IF unscheduled_ratio is less than %40 && rpc throttle list is not empty
 Set rtt_unscheduled to half of current value

 ENDIF

Incasting with Congest Control

Receiver

Sender n

Sender1

Sender2

When Detecting Congestion, it will send less
unscheduled packet

Unscheduled
Packet

20/34

Homa RPC Streaming Enhancements

21

Homa RPC Streaming Enhancements

22

Testbed Setup

25G network:
CPU: Intel(R) Xeon(R) Platinum 8163 (96 core,2.50GHz) RAM: 400G DIMM
DDR4 NIC: Mellanox ConnectX–4 Lx 25 Gbp
TOR Switch; Arista DCS-7050SX3-48YC12-F 25G ports

100G network:
CPU: Intel(R) Xeon(R) Silver 4314 (64 cores, 2.4 GHz) RAM: 400 GB DIMM
DDR4 NIC: Mellanox Technologies MT28841 dual-port 100Gb/s
TOR Switch: Ruijie Networks RG-S6580-48CQ8QC 100G ports

23

Testbed Setup

We use the same workload in [2] to do the test. Since Homa congestion control enhancements only
have a trivial effect when message size is small, we focus on workload W4, W5 and other fixed-size
long messages.

24

Test Tool

Test application cp_node is a program to test the performance(including throughput,
latency, etc) of Homa or TCP. In our test, we mainly tweak some parameters for clients
to adjust the behavior of the client node.

- workload, workload to run the test, could be fixed-size or workload type.

- client-max, maximum number of outstanding requests from a single client machine
(divided equally among client ports).

- ports, for clients, the number of ports on which to send requests.

25

https://github.com/PlatformLab/HomaModule/blob/main/util/cp_node.cc

Basic performance test setup

[Image]

26/34

[Image]

Basic Performance Evaluation -Throughput
-25G

27

[Image]

Basic Performance Evaluation -Throughput
-100G

28/34

Basic Performance Evaluation -Latency
-25G

[Image]

29/34

Basic Performance Evaluation -Latency
-100G

[Image]

30

Performance Evaluation - Incast

31

Long Message Incast Latency

[Image]

32/34

Performance Evaluation - Split Traffic

33

[Image]

Performance Evaluation - Split Traffic
-Throughput

34

[Image]

Performance Evaluation - Split Traffic - Latency

35

Conclusion

RTT Detection Algorithm Effectiveness
Our developed RTT detection algorithm effectively identifies minimum RTT for network links. Proving its reliabibility in
heterogeneous networks.This serves as a basis for defining optimal RTT_bytes .

Dynamic per peer adjustable window
Experimental results demonstrates 5% to 14% throughput improvement for large size message between 40k to 500k
compared to self-tuned RTT_bytes configurations.

Buffer Overflow Resilience
The algorithm demonstrates resilience against buffer overflow situations caused by large messages during incast
scenarios.

Compatibility with TCP Traffic
Optimized Homa protocol intelligently coexists with TCP traffic, detecting congestion caused by TCP and adjusting its
packet transmissions accordingly.The Optimized Homa adeptly circumvent buffer overflow challenge under w5,whereas
the vanilla homa manifests huge p99 latency due to this anomaly.

36

Future Improvements

• More accurate RTT measurement
Distinguishing between fabric (network) delay and host software delay in RTT.

• Congestion detection base on average RTT deviation
Deviation of average RTT (rtt_avg) from RTT_mid (three times RTT_min) for Congestion
detection

• Optimize pacer
Pacer needs to be aware of network congestion based on recent RTT. When RTT is low ,
although GRANT is not received, try to send some packets at a relatively low rate. When RTT is
high, transmit less packets to NIC.

• Zero-copy

37

References

[1]https://conferences.sigcomm.org/sigcomm/2015/pdf/papers/
p537.pdf
[2] https://www.usenix.org/system/files/atc21-ousterhout.pdf
[3]https://people.csail.mit.edu/alizadeh/papers/homa-sigcomm
18.pdf

38

Q & A

39

