
Kernel-Managed User Buffers
In Homa

John Ousterhout

Stanford University

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 2

Introduction

● Homa based on messages, not streams

▪ Good for latency, challenging for throughput

▪ Traditional buffer management approach defeats pipelining

● New approach for Homa:

▪ Kernel allocates buffers from client-supplied pool

● Improved large-message throughput by 70% (25 Gbps network)

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 3

Homa Overview

Clean-slate redesign of network transport

for datacenters:

● Message-oriented (RPCs)

● Connectionless: one socket per

application

● SRPT: prioritizes short messages

● Novel congestion control uses

switch priority queues

● Benefit: 7–83x reduction in tail latency

compared to TCP

request

message

response

message

Client Server

Pipelining Harder for Messages

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 4

time

copy user → kernel

network xmit

copy kernel → user

TCP

Homa

1.0

copy user → kernel

network xmit

copy kernel → user

Throughput

(500 KB msgs,

25 Gbps links)

18-19 Gbps

10-11 Gbps

At higher network speeds, copy costs dominate

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 5

Sender-Side Not Too Hard

● Main challenge: synchronization

▪ Must not hold RPC lock while copying

▪ Without lock, RPC could be deleted while copy in progress

▪ RCU not practical: time constants too long

time

copy user → kernel

network xmit

copy kernel → user

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 6

read/recvmsg APIs Prohibit Pipelining

1101
0010
1011

1101
0010
1011

1101
0010
1011

1101
0010
1011

??

recvmsg specifies

input buffer

Some packets arrive

for long message

Start copying

into buffer

Shorter message

arrives in full

1101
0010
1011

Must deliver immediately

as recvmsg result, but

buffer already committed!

Cannot start copying until entire message received

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 7

Pipelining Requires New API

● Homa must have buffer space for multiple incoming messages

● App no longer specifies the buffer when calling recvmsg

▪ Buffer is returned as result, not passed as parameter

▪ Homa chooses which buffer to return

Basic Flow of Buffers

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 8

KernelApp

Large mmapped

buffer region

Socket

Setup
Homa Driver

1101
0010
1011

1101
0010
1011

1101
0010
1011

1101
0010
1011

1101
0010
1011

1101
0010
1011

1101
0010
1011

1101
0010
1011

Incoming

Packets

Homa allocates

message buffers

recvmsg

Return buffer space to Homa

when no longer needed

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 9

Challenges

● How to structure the buffer region?

● How to reclaim unused buffer space?

● Need high throughput for buffer allocation

● Cache/memory efficiency

Alternatives for Buffer Structure

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 10

Array of full-size

message buffers (1 MB)?

Array of packet

buffers?

Incoming

Messages

Incoming

Messages

Memory inefficient, e.g. big

burst of small messages

High overhead for metadata

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 11

Homa Choice: Bpages

✓ Memory efficient

✓ Reduced metadata:

▪ <= 16 chunks per message

✓ Message headers always

contiguous

Divide buffer region into

bpages (64 KB)

Messages <= 64 KB:

always contiguous in

a single bpage

Large messages:

• Multiple bpages

• Only last is partial

Pack small messages

into bpages

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 12

Buffer Reclamation

● recvmsg returns pointers to message fragments

● Reference count per bpage: # pointers outstanding

● Application must eventually return pointers to Homa

▪ Arguments to recvmsg

▪ Homa decrements reference count(s)

● Homa recycles bpages when reference counts zero

Optimizations

Per-core fragment pages:

● For allocating small chunks

● No need for locking, no cache

coherency

● Bump-a-pointer allocation

▪ Get new page if not enough space

● Lease-based: reclaim if idle

Memory/cache efficiency:

● Buffer regions typically large (64

MB?)

▪ To handle worst-case scenarios

● Homa prefers first bpages in region

▪ Later pages may never be mapped

▪ Simplest case: only 2 bpages used

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 13

next

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 14

Buffer Exhaustion

What if buffer region fills up?

● Allocate all bpages for a message when first packet arrives

▪ Prevents deadlock

● If insufficient space for entire message:

▪ Queue message

▪ Don’t hold any bpages

▪ Discard incoming data packets

● When bpages become available:

▪ Give to shortest queued message

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 15

Performance

Throughput (500 KB messages, 25 Gbps network):

● Homa 1.0: 10-11 Gbps

● Homa (new buffer mechanism): 17-19 Gbps

● TCP: 18-19 Gbps

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 16

Remaining Issues

● How large must buffer regions be?

(currently 64 MB)

● Is 64 KB large enough for bpages?

November 1, 2023 Kernel-Managed User Buffers in Homa Slide 17

Conclusions

● Linux has structured itself around TCP’s stream-based model

● Message-based transport introduces conflicting needs

● One example: buffer management vs. throughput

● Solution: a new API for buffer management for Homa

	Slide 1: Kernel-Managed User Buffers In Homa
	Slide 2: Introduction
	Slide 3: Homa Overview
	Slide 4: Pipelining Harder for Messages
	Slide 5: Sender-Side Not Too Hard
	Slide 6: read/recvmsg APIs Prohibit Pipelining
	Slide 7: Pipelining Requires New API
	Slide 8: Basic Flow of Buffers
	Slide 9: Challenges
	Slide 10: Alternatives for Buffer Structure
	Slide 11: Homa Choice: Bpages
	Slide 12: Buffer Reclamation
	Slide 13: Optimizations
	Slide 14: Buffer Exhaustion
	Slide 15: Performance
	Slide 16: Remaining Issues
	Slide 17: Conclusions

