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Introduction

● Homa based on messages, not streams

▪ Good for latency, challenging for throughput

▪ Traditional buffer management approach defeats pipelining

● New approach for Homa:

▪ Kernel allocates buffers from client-supplied pool

● Improved large-message throughput by 70%  (25 Gbps network)
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Homa Overview

Clean-slate redesign of network transport

for datacenters:

● Message-oriented (RPCs)

● Connectionless: one socket per

application

● SRPT: prioritizes short messages

● Novel congestion control uses

switch priority queues

● Benefit: 7–83x reduction in tail latency

compared to TCP

request

message

response

message

Client Server



Pipelining Harder for Messages
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time

copy user → kernel

network xmit

copy kernel → user

TCP

Homa

1.0

copy user → kernel

network xmit

copy kernel → user

Throughput

(500 KB msgs,

25 Gbps links)

18-19 Gbps

10-11 Gbps

At higher network speeds, copy costs dominate
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Sender-Side Not Too Hard

● Main challenge: synchronization

▪ Must not hold RPC lock while copying

▪ Without lock, RPC could be deleted while copy in progress

▪ RCU not practical: time constants too long

time

copy user → kernel

network xmit

copy kernel → user
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read/recvmsg APIs Prohibit Pipelining
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for long message

Start copying
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Must deliver immediately

as recvmsg result, but

buffer already committed!

Cannot start copying until entire message received
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Pipelining Requires New API

● Homa must have buffer space for multiple incoming messages

● App no longer specifies the buffer when calling recvmsg

▪ Buffer is returned as result, not passed as parameter

▪ Homa chooses which buffer to return



Basic Flow of Buffers
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Homa Driver
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Homa allocates

message buffers
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Return buffer space to Homa

when no longer needed
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Challenges

● How to structure the buffer region?

● How to reclaim unused buffer space?

● Need high throughput for buffer allocation

● Cache/memory efficiency



Alternatives for Buffer Structure
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Array of full-size 

message buffers (1 MB)?

Array of packet

buffers?

Incoming

Messages

Incoming

Messages

Memory inefficient, e.g. big

burst of small messages

High overhead for metadata
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Homa Choice: Bpages

✓ Memory efficient

✓ Reduced metadata:

▪ <= 16 chunks per message

✓ Message headers always 

contiguous

Divide buffer region into

bpages (64 KB)

Messages <= 64 KB:

always contiguous in

a single bpage

Large messages:

• Multiple bpages

• Only last is partial

Pack small messages

into bpages
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Buffer Reclamation

● recvmsg returns pointers to message fragments

● Reference count per bpage: # pointers outstanding

● Application must eventually return pointers to Homa

▪ Arguments to recvmsg

▪ Homa decrements reference count(s)

● Homa recycles bpages when reference counts zero



Optimizations

Per-core fragment pages:

● For allocating small chunks

● No need for locking, no cache 

coherency

● Bump-a-pointer allocation

▪ Get new page if not enough space

● Lease-based: reclaim if idle

Memory/cache efficiency:

● Buffer regions typically large (64 

MB?)

▪ To handle worst-case scenarios

● Homa prefers first bpages in region

▪ Later pages may never be mapped

▪ Simplest case: only 2 bpages used
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next
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Buffer Exhaustion

What if buffer region fills up?

● Allocate all bpages for a message when first packet arrives

▪ Prevents deadlock

● If insufficient space for entire message:

▪ Queue message

▪ Don’t hold any bpages

▪ Discard incoming data packets

● When bpages become available:

▪ Give to shortest queued message
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Performance

Throughput (500 KB messages, 25 Gbps network):

● Homa 1.0: 10-11 Gbps

● Homa (new buffer mechanism): 17-19 Gbps

● TCP: 18-19 Gbps
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Remaining Issues

● How large must buffer regions be?

(currently 64 MB)

● Is 64 KB large enough for bpages?
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Conclusions

● Linux has structured itself around TCP’s stream-based model

● Message-based transport introduces conflicting needs

● One example: buffer management vs. throughput

● Solution: a new API for buffer management for Homa
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