
TCP and ULP Offload via AF_XDP Sockets

Tom Herbert

SiPanda
USA

tom@sipanda.io

Abstract
This paper presents a new approach to the old problem of TCP
Offload. TCP Offload Engines (TOE) was a hot topic in the early
2000’s. The premise was that TCP protocol processing could be
offloaded to specialized hardware for a significant performance
boost. While several solutions were developed and marketed, it
quickly became clear that TOE had serious drawbacks. Except for
a few niche use cases, TOE never gained much traction. While
these early attempts at TCP Offload failed, the desire to speed up
TCP processing never went away. But more than that, there’s a
new motivation for TCP offload: Cloud providers want to offload
infrastructure compute from their server CPUs to free up cycles
for running application code. We propose a modern take on TCP
Offload that offloads infrastructure compute, including TCP and
Upper Layer Protocol processing, from server CPUs. This design
facilitates the use of hardware acceleration to speed up TCP
processing, but avoids the pitfalls of TOE.

Keywords
TCP; TCP offload; XDP; eBPF; AF_XDP; sockets; ULP; ULP
offload; SmartNIC; accelerators

Introduction
This paper presents a new design for TCP and Upper Layer
Protocol (ULP) Offload.

There are two primary benefits of TCP and ULP Offload:
• Infrastructure compute can be offloaded from a server

CPU to an offload device. This frees up cycles in server
CPUs to run more application code, which in turn
allows cloud providers to sell more CPU cycles to their
customers

• Offloading to a specialized devices facilitates the use of
accelerators to speed up processing which can result in
lower latency, higher throughput, and lower power
consumption

These two goals are not necessarily coupled. For instance, a
simple approach to TCP Offload might be to offload connection
processing from a server CPU to an Application CPU in a
SmartNIC. This addresses the goal of offloading CPU cycles
from the server, but without further acceleration, the net effect on
performance could be actually worse than not offloading. In some
use cases, saving server CPU cycles may be of value even at the
cost of a small performance hit. Nevertheless, due to the
Application CPUs proximity to hardware, there are plenty of
opportunities to close that gap and ultimately improve
performance with TCP Offload.

The basic idea of this design is to offload TCP protocol
processing and the TCP state machine from a host CPU to an
Application CPU (App CPU) in a SmartNIC. ULP processing,
such as TLS encryption/decryption, may be offloaded as well.
The TCP offload is orchestrated by the XDP-Transport interface.
This interface uses AF_XDP sockets [1] with shared hardware
queues to facilitate generic and extensible message based
communications between applications and devices. The use of
AF_XDP sockets for messaging is a novel approach that has
applications outside of TCP Offload. For TCP Offload, this
model is advantageous since no kernel changes are required, and
we can leverage eBPF and XDP to optimize datapath operations.

The Application CPU in a SmartNIC is the target of TCP Offload.
This can be a plain commodity CPU running Linux where TCP
processing is done in the Linux stack, thereby avoiding the
challenges of TOE in running the TCP state machine in hardware.
A user space proxy in the App CPU, called the offload proxy,
implements the connection offload. On one side of the proxy,
XDP-Transport messages are received on AF_XDP sockets that
map to peer AF_XDP sockets in the server; on the other side of
the proxy are the sockets for the TCP connection. The server CPU
sends XDP-Transport messages to establish TCP connections and
send data, and the offload proxy converts messages received on
the AF_XDP socket into socket functions calls. The offload proxy
receives data on TCP sockets and sends XDP-Transport messages
with the received data to the server.

The offloaded protocols in this design are not limited to TCP, but
in fact other transport protocols could similarly be offloaded such
as QUIC or DCCP. The design also allows various Upper Layer
Protocols (ULPs) to be offloaded as well, including TLS, gRPC,
RDMA/TCP, and HTTP2.0. When a ULP is offloaded, the
application sends and receives Protocol Data Units (PDUs) for
the ULP. This eliminates the need for the application to perform
low level protocol processing, and instead the application can
focus on processing the payload of application protocols.

This design facilitates optimizations in both the host to device
interfaces and protocol accelerations. The XDP-Transport
interface allows zero copy send and receive, fine grained PDU
steering, and various forms of connection multiplexing. The
Application CPU can use all the typical offloads available in the
networking stack. Due to the Application CPUs proximity to
hardware and the constrained environment of a SmartNIC, there
are opportunities to seamlessly use advanced accelerations and
offloads like TLS offload, packet header data split, CAM lookup,
direct data placement, and domain specific CPU instructions.

The Unfortunate History of TCP Offload
TCP Offload Engines, or TOEs, have been a goal of networking
vendors dating back to the late 1990’s. There have been several
vendor efforts, including startups such as Silverback Systems,
that developed NICs with TCP offload. Microsoft’s Chimney
supported TCP offload in Windows starting in 2008.

As illustrated in Figure 1, the idea of TOE was straightforward.
IP and TCP protocols are processed in hardware instead of the
operating system which is the traditional approach. The hardware
presents an interface for connection management and for sending
and receiving data. The hardware interface can either be exposed
to the operating system via a device driver or directly to an
application library with kernel bypass. The premise of TOE was
that hardware can process TCP much faster than software
resulting in lower CPU utilization, lower latency, and higher
throughput.

Figure 1. Processing in traditional networking stacks versus that in TCP Offload
Engines (TOE)

While the development of TCP Offload Engines established the
performance benefits of TCP offload, TOE is generally
considered an abysmal failure [2]. In fact, Microsoft eventually
deprecated Chimney in 2018 [3].

The reasons for TOE’s demise can be summarized:
1. A TCP implementation in hardware is difficult to fix

which becomes especially problematic when security
issues with the TCP stack are found

2. Under edge conditions, a hardware implementation of
TCP may actually yield worse performance than a TCP
stack running in the host OS

3. The cost for all TCP connection offloading is fixed;
there's no way for the operating system to optimize
specific use cases

4. The NIC code wasn't written with TCP in mind; thus,
not all TCP features are implemented

5. Transparent TCP offload required seamless integration
into the host OS

6. Limited visibility into a TCP stack in hardware makes
debugging and diagnostics difficult

Motivation and Requirements for a new solution
In our design, the problems of TOE are primarily addressed by
offloading TCP to a CPU with a software networking stack
instead of offloading to fixed function hardware. That point
addresses problem #1 since if the offload device is running TCP
in software then it’s easy to fix problems or security issues. For
#2, as we mentioned using an offload for performance gain isn’t
necessarily the only priority anymore-- even without performance
gain, TCP Offload to another CPU would save host CPU cycles.
Still, this design encourages the use of hardware accelerations to
improve performance. #3 is no longer applicable, since the
offload is being processed in a CPU, there are opportunities for
programmable optimizations. Similarly, for problem #4, the
network stack in the App CPU can use all the TCP features and
accelerations available in software or hardware. For #5, the use
of AF_XDP sockets and a user-space proxy in the App CPU
avoids the need to change either the kernel in the server or the
kernel in the App CPU. #6 is addressed by offloading to a CPU
running a TCP stack in software, standard tools and techniques
can be used for debugging and diagnostics.

This requirements for a generic TCP Offload solution are:
• Reduce infrastructure and network processing overhead

in the server and hence reduce server CPU cycles spent
on infrastructure processing

• Optimize performance of offloaded TCP connections
by employing hardware accelerations and offloads
available to the offload stack

• Offload Upper Layer Protocols over TCP. Parse the
TCP stream and present ULP messages on application
sockets. Note that nearly all TCP communications are
message oriented (e.g. TLS, NVMe, RDMA, RPC, etc.)

• No changes to the server OS. We only require that
server OS is a reasonably modern kernel version that
supports AF_XDP sockets. This requirement is
motivated by the fact that kernels run in the data center
are typically two years behind

• No fancy hardware required for basic TCP Offload. The
minimal requirements are for a device with an
Application CPU and network interfaces, and lossless
shared hardware queues between server CPUs and App
CPUs

• Minimize application changes. Application interfaces
for TCP offload can be provided by a library, and
changes to the application should be straightforward. A
zero application change solution might be possible
using LD_PRELOAD to override system calls as is
done in OpenOnload

• Assume the kernel running in the Application CPU may
be changed if necessary. Presumably, the kernel
running in the App CPU is provided by the vendor and
can be upgraded for new features

• Support well known optimizations including polling,
zero copy send and receive data operations, header/data
split, and connection multiplexing similar to KCM.

• For higher levels of performance, advanced hardware
accelerations in the device can be employed

Design Overview
This section presents the overview of TCP and ULP Offload via
AF_XDP Sockets.

TCP offload is accomplished by offloading TCP processing from
one CPU, the “Server CPU”, to another CPU, the “Application
CPU” or “App CPU”. The server CPU resides in the host server,
and an App CPU resides in a SmartNIC or other “smart device”.
App CPUs run in a constrained environment and are intended for
low level datapath processing, and not for running general server
applications as CPUs do. Communications between the Server
CPU and the App CPU happens over shared hardware queues as
shown in Figure 2.

Figure 2. Communications between a server and an Application CPU via AF_XDP
sockets and shared hardware queues

AF_XDP sockets are used to present a queue interface to
applications running in the Server CPU and the App CPU. In the
Server CPU, the application is a user application that interacts
with the offload device using the XDP-Transport library (the
xdp_xport library). The XDP-Transport library provides user
space sockets to create offloaded connections and to send and
receive data. In the App CPU, the application is a type of TCP
proxy, called the offload proxy. The offload proxy maps messages
received on AF_XDP sockets to socket calls in the App CPUs
networking stack.

 TCP offload
Figure 3 illustrates the components and their communications for
TCP and ULP Offload via AF_XDP Sockets.

Figure 3. Component diagram of TCP Offload via AF_XDP Sockets. The
application runs in the server CPU in the left of the diagram, the offload proxy runs
in the App CPU at the right of the diagram. An application uses the XTS sockets
interface to offload connections. XTS socket calls are mapped to messages sent to
the offload proxy over AF_XDP sockets and shared hardware queues. The offload
proxy maps these message to socket calls in the local networking stack

Figure 4. Server applications to offload proxy communications with multiplexing
over shared hardware queues. Two application processes are depicted. Each process
has two threads. Each thread has its own AF_XDP socket that is multiplexed over a
hardware queue dedicated to the application processes

The user application, shown on the left in Figure 3, links with the
xdp_xport library. Library functions provide proxy management
and data operations over AF_XDP sockets. The AF_XDP sockets
are bound to TX/RX device queues. Several AF_XDP sockets
may be multiplexed over hardware queues as shown in Figure 4.
Multiplexing AF_XDP sockets over hardware queues presents a
trade off between the number of dedicated queues for threads and
the synchronization requirements when multiple CPUs access the
same hardware queues.

The messages sent on the AF_XDP sockets are called XDP-
Transport messages and are encapsulated in Ethernet frames with
an experimental EtherType. Messages may be variable length and
are preceded with a common XDP-Transport header that indicates
a message type. The message type determines the format of the
message body following the header.

XDP-Transport sockets
The xdp_xport library provides various interfaces and functions to
implement TCP offload. The XDP-Transport library provides
user space sockets, called XDP-Transport Sockets (XTS sockets),
as the application interface to TCP Offload. XTS sockets are
based on BSD sockets and have similar semantics. For instance,
xts_sendmsg is an analogue of sendmsg, and xts_socket is an
analogue of socket. An XDP-Transport socket number refers to a
user space XTS socket, it takes the place of the file descriptor
argument of analogous BSD socket calls.

Offload proxy
The offload proxy runs in user space in the App CPU. Its function
is to receive offload connection requests from the server, to
establish and maintain TCP connections, and to proxy send and
receive data. To send data on an offloaded connection, the server
sends a “send data” message to the offload proxy that includes the
data to send; the proxy writes the data on the TCP socket. When
data is received on a TCP socket, the offload proxy sends it to the
server in a “receive data” message. At initialization, the offload
proxy creates AF_XDP sockets that are mapped to shared
hardware queues. The XDP-Transport library creates peer
AF_XDP sockets for sending commands and receiving replies.
Commands are sent by the application via the XDP-Transport
library and include requests to create connections, start listeners,
close connections, and send data. Replies are sent by the offload
proxy and include connection succeeded reports, new incoming
connections, and received data.

Identifying connections and listeners
The XDP-Transport library and offload proxy keep identifiers to
connections and listeners. In the XDP-Transport library, XTS
socket numbers are the identifiers of offloaded connections and
listeners. The offload proxy has its own numerical identifiers for
offloaded connections and listeners that don’t necessarily
correspond to XTS socket numbers. When a message is sent, it
includes the identifier of the connection or listener relative to the
target of the message. The first message regarding a connection
or listener sent by either side includes the local endpoint’s
identifier for the connection. When an endpoint receives the first
message, it records the peer’s identifier in its control block for the
connection. The identifier is included in subsequent messages
sent to the peer, and the receiver uses the identifier to find the
control block for connection referred to in the messages.

Message Communications
A message based protocol, called XDP-Transport Messages, is
used for communications between the XDP-Transport library
running in the server and the offload proxy running in an App
CPU. This section describes the message format and
characteristics of communications.

Example processing flow
An example message flow for creating a connection is:

1. The XDP-Transport library in the server sends a
“connect request” message. The message contains an
XTS socket and parameters for the connection
including IP address and port number

2. The offload proxy receives the “connect request”
message, creates a local context, saves the received peer
identifier in the context, and initiates a connection

3. When the connection is established, the offload proxy
sends a “connection ack” reply message to the server.
The message includes both the identifier received from
the peer and the local identifier for the connection

4. When the server receives the “connection ack”, it
locates the control block from the XTS socket number
in the message. It saves the identifier of the peer in the
XTS socket control block context for the connection

5. At this point the connection is fully established and
each side knows the identifier used by its peer. Any
further messages sent by either side contain the peer’s
identifier for the connection. When either side receives
a message, the identifier in the message is used to
lookup the local context for the connection

Message Formats
XDP-Transport messages are encapsulated in Ethernet Frames.
The general message format is illustrated in Figure 5.

Figure 5. Format of an XDP-Transport message encapsulated in an Ethernet frame

The Destination MAC address and the Source MAC address
should be set to a local MAC address of the NIC. A SmartNIC
should internally loopback packets addressed to itself without
sending the packet on the wire. This behavior could be
implemented in a virtual switch in the NIC.

The server and Application CPU communicate using messages
sent over the AF_XDP sockets and shared hardware queues.
These messages are framed in Ethernet packets using an
experimental Ethernet protocol (0x855B) to prevent
misinterpretation.

Ethernet encapsulation of messages has some salient properties:

• The message interface between the Server and App
CPU is generic and extensible. Messages could
potentially have other use cases than just TCP or ULP
offload

• Messages are properly formatted Ethernet frames. The
messages are processed internal in a system, however it
is conceivable that an Ethernet protocol could be
developed to allow offloading to devices across an
Ethernet network

The payload of the Ethernet Frame contains the XDP-Transport
message. Each message is preceded by a message header:

struct xts_msg_hdr {
 __u8 type;
 __u8 seqno;
 __u8 data[0];
}
type indicates the message type. seqno is used to enforce reliable
and in order communications (the use of this field is described
below). data contains the message body and is variable length
where the format and length are determined by the message type.

Structure definitions for various messages can be defined and
contain a xts_msg_hdr structure as the first element. For instance,
“struct xts_msg_connect” might be defined which includes the
various parameters for a “create connection” message. The
structure could be cast as a xts_msg_hdr structure.

Reliable communications
Communication between a server and an offload proxy must be
reliable, messages cannot be dropped and must be delivered in
order. This means the shared hardware queue must be lossless
and support in-order delivery. To verify correct operation, each
message has a sequence number in the message header. Sequence
numbers are maintained by each communicating peer as a simple
counter for each AF_XDP socket. When a message is sent on an
AF_XDP socket, the sender sets the current counter value as the
sequence number in the message header and increments the
counter. The first message must have sequence number zero.
Message receivers track the sequence numbers to verify that
messages are received in order and without loss. If an unexpected
sequence number is received then the AF_XDP socket is in error
and XTS sockets must be closed. This is a fatal error and the best
course of action may be to terminate the application.

Flow Control
Flow control for sending and receiving data on an XTS socket is
managed by a credit mechanism called post credits. Both the
XDP-Transport library and the offload proxy provide credits to
their peers for sending data. Post credits is the number of bytes
that are allowed to be posted to the peer. This is either the amount
of data that can be in a “send data” message sent by the server to
the offload proxy, or the amount of data in a “receive data”
message sent by an offload proxy to the server. Each byte
consumes one credit. When data is posted, the number of credits
must be greater than or equal to the number bytes in the
operation, and the number of post credits is decremented by the
number of bytes in the operation.

As the peer processes post data, credits are returned in credit
advertisements. Credit advertisements can be sent in “pure credit
advertisement” messages or can piggyback on other messages.
Each side keeps a counter of “unadvertised credits” that can be
advertised to its peer. Returned credits are additive. For instance,
if the current post credits is 20 and a credit advertisement is
received with a value of 10 then the new post credits is 30.

Offload proxy flow control
The offload proxy maintains its own per socket buffer, the spill
buffer, in addition to the socket buffer for the TCP connection in
the kernel. The spill buffer is used to manage post credits. The
size of the spill buffer is assumed to be at least equal to the size of
the send socket buffer. The sum of the sizes of the spill buffer and
the send socket buffer is the maximum number of post credits
given to the application.

When the offload proxy receives a “send data” message from the
server it performs the following procedures. Note num_to_send is
the number of bytes to send, num_sent_bytes is the number of
bytes successfully written, POST_CREDITSUNA is the number of
unadvertised credits, and POST_CREDITS_LIMIT is the
threshold to send a pure credit advertisement message.

1. If the spill buffer is empty, write new data on the TCP
socket and perform the following:

a) POST_CREDITSUNA+= num_sent_bytes

b) If POST_CREDITSUNA>POST_CREDITS_LIMIT
then send a pure post credits advertisement and set
POST_CREDITSUNA=0

c) If num_sent_bytes < num_to_send then copy the
unsent bytes of data to the spill buffer

2. If the spill buffet is not empty copy num_to_send bytes
to the tail of the spill buffer

When a TCP socket becomes readable perform the following:

1. Send data from spill buffer (num_sent_bytes is the
number of bytes successfully sent)

2. POST_CREDITSUNA+= num_sent_bytes

3. If POST_CREDITSUNA>POST_CREDITS_LIMIT then
send a pure post credits advertisement and set
POST_CREDITSUNA=0

Server flow control
The XDP-Transport library in the server maintains a receive
buffer for each XTS socket. The maximum amount of outstanding
data that the offload proxy can post to the application is the size
of this buffer. The procedures for draining the buffer are:

1. The application calls xts_recv_* and reads bytes from
the receive buffer (num_recv_bytes is the number of
bytes read by the application)

2. POST_CREDITSUNA+= num_recv_bytes

3. If POST_CREDITSUNA>POST_CREDITS_LIMIT then
send a post credits advertisement and set
POST_CREDITSUNA=0

Message Types
Constants for message types have the form XTS_CMD_* for
messages sent by XDP-Transport library in the server, and the
form XTS_REPLY_* for messages sent by the offload proxy.
The basic XDP-Transport message types are:

XTS_CMD_CONNECT
Start a proxy connection. Message parameters include the
XTS socket number, IP protocol version (4 or 6), IP protocol
(currently TCP), address and port for the connection

XTS_REPLY_CONNECT_ACK
Report success or failure of a connection request. Parameters
include the XTS socket number that was received in the
XTS_CMD_CONNECT message the connection identifier
of the offload proxy

XTS_CMD_LISTEN
Request to create a listener. Message parameters include the
XTS socket number for the listener and the port number

XTS_REPLY_LISTEN_ACK
Acknowledge an XTS_CMD_LISTEN message and indicate
the listener started. Message parameters include the XTS
socket number and offload proxy’s identifier for the listener

XTS_REPLY_NEWCONN
Report a new connection received on a listener. Message
parameters include the XTS socket number of the listener,
the offload proxy’s connection identifier, and the address
and port number of the peer endpoint of the connection

XTS_CMD_NEWCONN_ACK
Acknowledge an XTS_REPLY_NEWCONN message.
Message parameters include the connection identifier of the
offload proxy, and the XTS socket number

XTS_CMD_SEND
Send data and/or close the connection (or listener). Message
parameters include offload proxy’s connection identifier, the
length of data, the data to send, and advertised post credits

XTS_REPLY_RECV
Post received data and/or report connection was closed.
Message arguments include the XTS socket number, the
length of data, the received data, and advertised post credits

Application API
The XDP-Transport socket API is an analogue of the standard
BSD sockets API [4]. Function names have the form xdp_xport_*
where * is replaced by the name of the corresponding socket
function. For instance, xdp_xport_socket is the analogue of the
socket function, xdp_xport_listen is the analogue of the listen
function, and so on. xdp_xport_ioctl and xdp_xport_fcntl are also
defined as the analogue of the ioctl and fcntl functions which are
not strictly BSD socket functions. The XDP-Transport socket
functions are:

xts_socket xts_accept
xts_close xts_send
xts_ioctl xts_sendto
xts_fcntl xts_sendmsg
xts_getsockopt xts_recv
xts_setsockopt xts_recvfrom
xts_bind xts_recvmsg
xts_connect xts_getsockname
xts_listen xts_getpeername

These functions take the same arguments as their counterparts in
BSD sockets. The major difference is the number used to identify
sockets. In BSD sockets, the file descriptors identify sockets-- the
socket and accept functions return a file descriptor and a file
descriptor is the input argument to various socket functions. In
the XDP-Transport sockets API, XTS sockets are represented by
XTS socket numbers that are identifiers in their own number
space-- the xdp_xport_socket and xdp_xport_accept calls return
an XTS socket number and an XTS socket number is the input
argument to various XTS socket functions. Note that an XTS
socket number must never be used as input to functions expecting
a file descriptor.

The steps for an application to create an offloaded connection are:

1. Create an XTS socket by calling xts_socket. The
arguments are similar to those of a socket call to specify
IPv6 or IPv6 and TCP protocols

2. Connect to a destination by calling xts_connect. The
arguments are similar to those of a connect socket call.
The XDP-Transport library on the server sends an
XTS_CMD_CONNECT message to the offload proxy
over an AF_XDP socket. xts_connect returns an error
code indicating whether connection establishment was
successful

3. The offload proxy receives an XTS_CMD_CONNECT
message. It creates a TCP socket by calling socket and
calls connect to establish a connection

4. When the connection is established, the offload proxy
sends a XDP_XPORT_CMD_CNX_REPLY message
to the server on the appropriate AF_XDP socket

5. The XDP-Transport library on the server receives the
connection reply message and returns to application
from the xts_connect with an error code for success

The steps for an application to create an offloaded listener and to
accept connections are:

1. Create an XTS socket by calling xts_socket. Arguments
are similar to those of a socket call to specify IPv4 or
IPv6 and TCP protocols

2. Start a listener by calling xts_listen. Arguments are
similar to those of the listen socket call. The XDP-
Transport library on the server sends an
XTS_CMD_LISTEN message to the offload proxy

3. The offload proxy receives the XTS_CMD_LISTEN
message. It creates a TCP socket by calling socket and
calls listen to listen on the socket. It then calls accept on
the socket in an event loop

4. The application calls xts_accept and waits for new
connections. Polling, described below, may also be
used for asynchronous listeners

5. New connections from the offload proxy are returned
from accept. For each new connection, the offload
proxy sends an XTS_REPLY_NEWCONN message to
the server. The message parameters include the proxy’s
identifier for the new connections and the XTS socket
number of the listener

6. When the XDP-Transport library on the server receives
a XTS_REPLY_NEWCONN message, it creates a new
XTS socket for the connection. The library sends an
XTS_CMD_NEWCNX_ACK message to the offload
proxy. The message parameters include the XTS socket
number and the offload proxy’s connection identifier
that was received in the XTS_REPLY_NEWCONN
message

7. The library returns to the application from xts_accept
with the XTS socket number for the new connection

Send and receive operations
When an offloaded connection is established the application can
begin sending and receiving data on the offloaded connection.
The application calls xts_send_* functions to send data, and
xts_recv_* functions to receive data.

When the application sends data on an XTS socket, the XDP-
Transport library sends an XTS_CMD_SEND message to the
offload proxy. The message contains the data length and the data
itself. The message may also include advertised post credits and
may indicate the connection is to be closed. When the offload
proxy receives the XTS_CMD_SEND message, it writes the
message on the TCP socket using sendmsg socket functions.

The offload proxy receives data on sockets by calling recvmsg.
Received data is sent to the server in an XTS_REPLY_RECV
message. The message contains the length of data and the data.
The message may also include advertised post credits and may
indicate that the connection was closed. When the XDP-Transport
Library in the server receives the XTS_REPLY RECV message it
buffers the data and provides it to the application when
xts_recv_* functions are called.

Polling
Similar to Linux file descriptors, XTS sockets can be polled.
However, since they’re not file descriptors they cannot be polled
directly by epoll [5]. The strategy is to poll the underlying
AF_XDP socket, and then call a secondary polling function on
poll events for AF_XDP sockets. The secondary polling function
checks the status of XTS sockets associated with an AF_XDP
socket and returns events for those XTS sockets that are ready.

To enable polling of XTS sockets, an XTS polling context is first
created by calling xts_epoll_ctx_create. This function allocates
and initializes a data structure to hold the context for polling XTS
sockets, and returns a pointer to the allocated structure. One XTS
polling context is created for each AF_XDP socket associated
with XTS sockets. XTS sockets are added to the XTS polling
context by calling the xts_epoll_ctl function. This function is
analogous to epoll_ctl and takes the same arguments except that
the epoll file descriptor argument is replaced by a pointer to the
XTS polling context. Polling is enabled for AF_XDP sockets by
calling epoll_ctl where the event argument contains a pointer to
the XTS context created for the AF_XDP socket.

Applications typically call epoll_wait in an event loop. When an
AF_XDP socket with XTS sockets is ready, an associated event is
returned by epoll_wait. The returned event structure includes a
pointer to the XTS polling context associated with the AF_XDP
socket. The program calls xts_epoll which takes the XTS polling
context as an argument. xts_epoll returns a set of events for ready
XTS sockets that were added to the XTS polling context. The
XTS socket corresponding to each event can then be processed.

The API functions for polling are listed below:

void *xts_epoll_ctx_create();

Create an XTS polling context. The return value is either a
pointer to the allocated context or NULL in case of failure

int xts_epoll_ctl(void *ectx, int op,
 int xts_socket_num,
 struct epoll_event *ev);

Add, modify, or remove entries in the interest list of an XTS
polling context. ectx is an XTS polling context. op indicates
the operation (EPOLL_CTL_ADD, EPOLL_CTL_DEL, or
EPOLL_CTL_MOD). xts_socket_num indicates the XTS
socket. ev is an epoll event structure that is returned by
xts_epoll when the XTS socket is ready.

int xts_epoll(void *ectx,
 struct epoll_event *events,
 int maxevents);

Return the ready events for an XTS polling context. ectx is
an XTS polling context. events is a buffer that holds
information about returned events in epoll_event structures.
maxevents is the maximum number of events that can be
returned.

Example poll loop
The code snippet below provides an example poll loop with
polling of XTS sockets. Modifying a typical application poll loop
to support offloaded connections is expected to be a matter of
inserting code to perform secondary polling of AF_XDP sockets.
Note that an XTS polling context is returned in an event for an
AF_XDP socket. If other file descriptors are also polled their
events need to be distinguished from those of AF_XDP sockets.
In this example that is done by including a pointer to an XTS
polling context in all events; If the pointer is NULL then the
event is not for an AF_XDP socket with XTS sockets.

/* Setup code for polling XTS sockets */
struct my_event {
 void *xts_ctx;
 /* Fields for non xdp_xport events */
};
struct epoll_event ev, *evp, evs[MAX_EVS];
int epfd, num, I, xnum, j;
struct my_event *myev;
void *xectx;

epfd = epoll_create(0);
xectx = xdp_xport_epoll_create();
myev = malloc(sizeof(*myev));
myev→xts_ctx = xectx;
ev.events = EPOLLIN;
ev.data.ptr = myev;
epoll_ctl(xectx, EPOLL_CTL_ADD, af_xdp_fd,
 myev);

ev.events = EPOLLIN;
ev.data.u64 = xts_sock_num;
xts_epoll_ctl(xctx, EPOLL_CTL_ADD,
 xts_sock_num, &ev);

/* Event loop for polling XTS sockets */
while (1) {
 num = epoll_wait(epfd, evs, MAX_EVS, -1);
 for (i = 0; i < num; i++) {
 myev = (struct my_event *)
 evs[i].data.ptr;
 if (myev->xts_ctx) {
 struct epoll_event xevs[MAX_EVS];

 xnum = xts_epoll(myev→xts_ctx,
 xevs, MAX_EVS);
 for (j = 0; j < xnum; j++) {
 /* XDP-Transport socket ready */
 process_xts_socket(
 xevs[i].data.u64);
 }
 } else {
 /* Process application fd */
 process_ready_fd(event.data.ptr);
 }
 }
}

ULP Offloads
Offloading the processing of Upper Layer Protocols (ULPs) is
done by creating an offloaded TCP connection and “pushing”
ULP functions onto the TCP socket. Logically, this creates a
protocol stack on the socket. An XTS socket with a pushed ULP
stack is effectively a ULP socket that allows an application to
send and receive Protocol Data Units (PDUs) corresponding to
the protocol of the offloaded ULP. The protocol used with a ULP
socket is programmable such that ULP sockets can be created for
various protocols including RDMA/TCP, NVMe/TCP, and TLS.

In the example of Figure 6, ULP functions are pushed onto a TCP
socket to create “HTTP/2-HTTPS sockets” [6]. An application
would send and receive plain text HTTP messages on such a
socket. As shown in this example, the send and receive ULP
processing for a socket may be different. In the send path, the
application sends HTTP/2 requests, and in the offload processing
the message data is encrypted by TLS and the output data is then
sent on the TCP socket. The receive path is a bit more involved.
Data is received on the offloaded TCP socket, and an instance of
strparser (described below) delineates the data stream into TLS
records. The TLS records are decrypted by the TLS layer and the
output is a data stream. The data stream is then processed by a
second instance of strparser that delineates the stream into
HTTP/2 messages. The HTTP/2 messages are received by the
application on an XTS socket.

strparser
strparser (“stream parser”) is a generic facility to parse a data
stream into discrete ULP messages. strparser can parse any ULP
protocol on a data stream that has a standard message format with
a message header that indicates the length of the message.
strparser has been implemented in Linux kernel where the parsing
of the ULP header is done by an eBPF program. An eBPF
program is attached to the strparser instance parsing a TCP
connection and provides the instructions to parse the ULP header
and return the length of the next message to strparser. Below is a
snippet of eBPF code parse theHTTP/2 header:

int bpf_prog1(struct __sk_buff *skb)
{
 __u32 w;
 if (bfp_skb_load_bytes(skb, 0, &w, 3))
 return 0;
 return ntohl(w);
}

Figure 6. Example of making “HTTP/2 sockets” with TLS by pushing ULP
programs

API
ULP protocols are pushed onto an XTS socket by a “ULP push”
IOCTL. Two IOCTLs are defined: SIOCPUSHULPTX and
SIOCPUSHULPRX for pushing ULPs on the transmit side and
receive side respectively.

The argument of the IOCTL is a castable “push info” structure:

struct ulp_info {
 __u16 ulp_id;
 __u8 ulp_parameters[0];
};

ulp_id identifies the ULP being pushed. Identifiers for supported
ULPs can be advertised by the offload device using an out-of-
band mechanisms. ulp_parameters are variable length parameters
specific to the ULP being pushed.

The pseudo code to create the pushed protocol stacks for HTTP/2
sockets illustrated in Figure 6 is:

s = xdp_xport_socket(AF_INET6,
 SOCK_SEQPACKET, IPPROTO_TCP);

/* Push ULPs for receive side */
xts_ioctl(s, SIOCPUSHULPRX,
 &strparser_tls_info);
xts_ioctl(s, SIOCPUSHULPRX, &tls_rx_info);
xts_ioctl(s, SIOCPUSHULPRX,
 &strparser_http2_info);

/* Push ULPs for transmit side */
xts_ioctl(s, SIOCPUSHULPTX, &tls_rx_info);

ULP protocol handshake
In some cases, a ULP protocol is used starting from the first byte
of a TCP connection, however in other cases there may be a
protocol handshake over the TCP connection that precedes a
switch to using an Upper Layer Protocol on the connection. An
example is when an HTTP connection on port 80 switches to use
TLS encryption. Note that once the ULP switch-over happens, for
the rest of the lifetime of the connection only ULP messages of
the negotiated protocol are used. To support ULP protocol
handshake, the offload proxy connection can be set to “peek
mode” at the beginning of a connection. While in peek mode, the
offload proxy peeks the data in the TCP socket buffer so that
received data remains in the socket buffer (by using MSG_PEEK
with recvmsg). The peeked data is sent to the application that can
parse the data and determine the ULP functions to be pushed.
Once the proper ULPs have been pushed, the application
performs an XTS IOCTL “end peek mode” operation
(SIOCENDPEEKMODE). The arguments to the IOCTL include
the number of bytes to drop from the first received byte on the
connection. When the proxy server receives the message, it reads
and discards the number of bytes to drop. Subsequently, normal
operations commence where data is read from the TCP socket and
is processed by any pushed ULPs and PDUs are delivered to the
application.

Implementation
When ULPs are offloaded to an App CPU, it is the discretion of
the device how to implement the datapath for the protocols. In the
simplest case, all of the ULP processing could be done in the user
space offload proxy. Alternatively, kernel functions or hardware
offload could be employed. A hybrid approach could be used
where some ULPs are offloaded to the kernel or hardware, and
others are implemented in the user space proxy. For instance, in
the HTTP/2 example illustrated in Figure 6, the TLS processing
could be offloaded to a NIC hardware that supports TLS offload,
but the strparser for delineating HTTP/2 messages might run in
the userspace offload proxy.

Security
Security is provided by mechanisms of AF_XDP sockets. This is
supported by enforcement of permission to allow a program to
create an AF_XDP socket as well as by eBPF/XDP programs that
are attached to network interfaces and can implement arbitrary
security policies. Note that scalable implementation with
security is a topic for future work.

Performance Results
The primary goal of TCP offload via AF_XDP sockets is to
offload CPU cycles from host CPUs. Figure 7 compares the host
CPU utilization with and without offload. Note that this data is
based on preliminary analysis and extrapolation of a “proof of
concept” implementation. Future work includes a more complete
implementation and detailed performance analysis.

Figure 7. Performance of TCP offload via AF_XDP sockets. The graphs compare
the relative host CPU utilization with and without offload. The graph on the left
compare no TCP offload with TCP offload, and the graph on the right compares
TCP and TLS with and without offload

The primary performance benefits of TCP offload come from
eliminating the instructions in the execution path for processing
protocol headers, and in the case of a ULP, such as TLS, there are
also benefits in offloading the algorithm. AF_XDP sockets are
expected to have inherently less overhead of typical protocol
sockets like TCP and UDP sockets. Managing the offload and
supporting an API does require some overhead in userspace. This
is mostly a case of dereferencing user space sockets in library
functions. Flow control is implemented as part of the user space
sockets library, it’s not particularly more complex than managing
socket buffers for flow control, and note that pure flow control
messages sent to and from the offload device can be minimized.

Acknowledgments
The author would like to thank Mike Rubin, Michael
Winsner, and Michae Davidson for their valuable
feedback.

References
1. Topel, B., Karlsson, M., Duyck, A., Starovoitov, A.,
Borkmann, D., Brouer, J., Fastabend, J., Corbet, J., Tsirkin, M.,
Zhang, Q., and W. de Bruijn, "The Linux Kernel: AF_XDP",
https://www.kernel.org/doc/html/next/networking/af_xdp.html.

2. Linux Foundation, L., "Wiki: TOE",
https://wiki.linuxfoundation.org/networking/toe.
3. Wilson, B., "Microsoft: Why Are We Deprecating Network
Performance Features",
https://techcommunity.microsoft.com/t5/core-infrastructure-and-
security/why-are-we-deprecating- network-performance-features-
kb4014193/ba-p/259053.
4. Chukov, S. P., "Socket programming",
https://wiki.netbsd.org/examples/socket_programming/.
5. Linux manual page, "epoll(7)", https://man7.org/linux/man-
pages/man7/epoll.7.html>.
 https://man7.org/linux/man-pages/man7/epoll.7.html
6. Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI
10.17487/RFC7540, May 2015,
https://www.rfc-editor.org/info/rfc7540.
7. Herbert, T., "Stream Parser (strparser)",
https://docs.kernel.org/networking/strparser.html.

Author Biography
Tom Herbert is Chief Technical Officer of SiPanda working on
high performance programmable data paths, open source
development , and protocol development.

https://www.kernel.org/doc/html/next/networking/af_xdp.html
https://docs.kernel.org/networking/strparser.html
https://man7.org/linux/man-pages/man7/epoll.7.html
https://man7.org/linux/man-pages/man7/epoll.7.html
https://man7.org/linux/man-pages/man7/epoll.7.html
https://wiki.netbsd.org/examples/socket_programming/
https://wiki.linuxfoundation.org/networking/toe

	The Unfortunate History of TCP Offload
	Motivation and Requirements for a new solution
	Design Overview
	TCP offload

	XDP-Transport sockets
	Offload proxy
	Identifying connections and listeners
	Message Communications
	Example processing flow

	Message Formats
	Reliable communications

	Flow Control
	Offload proxy flow control
	Server flow control
	Message Types

	Application API
	Send and receive operations
	Polling
	Example poll loop

	strparser
	API

	ULP protocol handshake
	Implementation

	Security
	Performance Results
	Acknowledgments
	References
	Author Biography

