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Abstract
This paper presents a new approach to the old problem of TCP
Offload. TCP Offload Engines (TOE) was a hot topic in the early
2000’s. The premise was that TCP protocol processing could be
offloaded to specialized hardware for a significant performance
boost. While several solutions were developed and marketed, it
quickly became clear that TOE had serious drawbacks. Except for
a few niche use cases, TOE never gained much traction. While
these early attempts at TCP Offload failed, the desire to speed up
TCP processing never went away. But more than that, there’s  a
new motivation for TCP offload: Cloud providers want to offload
infrastructure compute from their server CPUs to free up cycles
for running application code. We propose a modern take on TCP
Offload that offloads infrastructure compute, including TCP and
Upper Layer Protocol processing, from server CPUs. This design
facilitates  the  use  of  hardware  acceleration  to  speed  up  TCP
processing, but avoids the pitfalls of TOE.

Keywords
TCP; TCP offload; XDP; eBPF; AF_XDP; sockets; ULP; ULP
offload; SmartNIC; accelerators

Introduction
This  paper  presents  a  new  design  for  TCP  and  Upper  Layer
Protocol (ULP) Offload.

There are two primary benefits of TCP and ULP Offload:
• Infrastructure compute can be offloaded from a server

CPU to an offload device. This frees up cycles in server
CPUs  to  run  more  application  code,  which  in  turn
allows cloud providers to sell more CPU cycles to their
customers

• Offloading to a specialized devices facilitates the use of
accelerators to speed up processing which can result in
lower  latency,  higher  throughput,  and  lower  power
consumption

These  two  goals  are  not  necessarily  coupled.  For  instance,  a
simple approach to TCP Offload might be to offload connection
processing  from  a  server  CPU  to  an  Application  CPU  in  a
SmartNIC.  This  addresses  the  goal  of  offloading  CPU  cycles
from the server, but without further acceleration, the net effect on
performance could be actually worse than not offloading. In some
use cases, saving server CPU cycles may be of value even at the
cost  of  a  small  performance  hit.  Nevertheless,  due  to  the
Application  CPUs  proximity  to  hardware,  there  are  plenty  of
opportunities  to  close  that  gap  and  ultimately  improve
performance with TCP Offload.

The  basic  idea  of  this  design  is  to  offload  TCP  protocol
processing and the TCP state machine from a host CPU to an
Application CPU (App CPU) in a SmartNIC. ULP processing,
such as  TLS encryption/decryption,  may be offloaded as  well.
The TCP offload is orchestrated by the XDP-Transport interface.
This interface uses  AF_XDP sockets  [1] with shared hardware
queues  to  facilitate  generic  and  extensible  message  based
communications  between applications  and  devices.  The  use  of
AF_XDP sockets  for  messaging  is  a  novel  approach  that  has
applications  outside  of  TCP  Offload.  For  TCP  Offload,  this
model is advantageous since no kernel changes are required, and
we can leverage eBPF and XDP to optimize datapath operations.

The Application CPU in a SmartNIC is the target of TCP Offload.
This can be a plain commodity CPU running Linux where TCP
processing  is  done  in  the  Linux  stack,  thereby  avoiding  the
challenges of TOE in running the TCP state machine in hardware.
A user space proxy in the App CPU, called the offload proxy,
implements  the  connection  offload.  On one  side of  the  proxy,
XDP-Transport messages are received on AF_XDP sockets that
map to peer AF_XDP sockets in the server; on the other side of
the proxy are the sockets for the TCP connection. The server CPU
sends XDP-Transport messages to establish TCP connections and
send data, and the offload proxy converts messages received on
the AF_XDP socket into socket functions calls. The offload proxy
receives data on TCP sockets and sends XDP-Transport messages
with the received data to the server.

The offloaded protocols in this design are not limited to TCP, but
in fact other transport protocols could similarly be offloaded such
as QUIC or DCCP. The design also allows various Upper Layer
Protocols (ULPs) to be offloaded as well, including TLS, gRPC,
RDMA/TCP,  and  HTTP2.0.  When  a  ULP  is  offloaded,  the
application sends and receives Protocol Data Units (PDUs) for
the ULP. This eliminates the need for the application to perform
low level  protocol  processing,  and  instead  the  application  can
focus on processing the payload of application protocols.

This design facilitates  optimizations in  both the host to  device
interfaces  and  protocol  accelerations.  The  XDP-Transport
interface allows zero copy send and receive,  fine grained PDU
steering,  and  various  forms  of  connection  multiplexing.  The
Application CPU can use all the typical offloads available in the
networking  stack.  Due  to  the  Application  CPUs  proximity  to
hardware and the constrained environment of a SmartNIC, there
are opportunities to seamlessly use advanced accelerations and
offloads like TLS offload, packet header data split, CAM lookup,
direct data placement, and domain specific CPU instructions. 



The Unfortunate History of TCP Offload
TCP Offload Engines, or TOEs, have been a goal of networking
vendors dating back to the late 1990’s. There have been several
vendor  efforts,  including  startups  such  as  Silverback  Systems,
that  developed  NICs  with  TCP  offload.  Microsoft’s  Chimney
supported TCP offload in Windows starting in 2008.

As illustrated in Figure 1, the idea of TOE was straightforward.
IP and TCP protocols are processed in hardware instead of the
operating system which is the traditional approach. The hardware
presents an interface for connection management and for sending
and receiving data. The hardware interface can either be exposed
to  the  operating  system  via  a  device  driver  or  directly  to  an
application library with kernel bypass. The premise of TOE  was
that  hardware  can  process  TCP  much  faster  than  software
resulting  in  lower  CPU  utilization,  lower  latency,  and  higher
throughput.

Figure 1. Processing in traditional networking stacks versus that in TCP Offload 
Engines (TOE)

While the development of TCP Offload Engines established the
performance  benefits  of  TCP  offload,  TOE  is  generally
considered an abysmal failure [2]. In fact, Microsoft eventually
deprecated Chimney in 2018 [3].

The reasons for TOE’s demise can be summarized:
1. A TCP implementation in hardware is difficult  to fix

which  becomes  especially  problematic  when security
issues with the TCP stack are found

2. Under edge conditions, a hardware implementation of
TCP may actually yield worse performance than a TCP
stack running in the host OS

3. The cost  for  all  TCP connection  offloading  is  fixed;
there's  no  way  for  the  operating  system  to  optimize
specific use cases

4. The NIC code wasn't written with TCP in mind; thus,
not all TCP features are implemented

5. Transparent TCP offload required seamless integration
into the host OS

6. Limited visibility into a TCP stack in hardware makes
debugging and diagnostics difficult

Motivation and Requirements for a new solution
In our design, the problems of TOE are primarily addressed by
offloading  TCP  to  a  CPU  with  a  software  networking  stack
instead  of  offloading  to  fixed  function  hardware.  That  point
addresses problem #1 since if the offload device is running TCP
in software then it’s easy to fix problems or security issues. For
#2, as we mentioned using an offload for performance gain isn’t
necessarily the only priority anymore-- even without performance
gain, TCP Offload to another CPU would save host CPU cycles.
Still, this design encourages the use of hardware accelerations to
improve  performance.  #3  is  no  longer  applicable,  since  the
offload is being processed in a CPU, there are opportunities for
programmable  optimizations.  Similarly,  for  problem  #4,  the
network stack in the App CPU can use all the TCP features and
accelerations available in software or hardware.  For #5, the use
of  AF_XDP sockets  and  a  user-space  proxy  in  the  App CPU
avoids the need to change either the kernel in the server or the
kernel in the App CPU. #6 is addressed by offloading to a CPU
running a TCP stack in software, standard tools and techniques
can be used for debugging and diagnostics.

This requirements for a generic TCP Offload solution are:
• Reduce infrastructure and network processing overhead

in the server and hence reduce server CPU cycles spent
on infrastructure processing 

• Optimize  performance  of  offloaded  TCP connections
by  employing  hardware  accelerations  and  offloads
available to the offload stack

• Offload  Upper  Layer  Protocols  over  TCP.  Parse  the
TCP stream and present ULP messages on application
sockets. Note that nearly all TCP communications are
message oriented (e.g. TLS, NVMe, RDMA, RPC, etc.)

• No changes  to  the  server  OS.  We  only  require  that
server OS is a reasonably modern kernel version that
supports  AF_XDP  sockets.  This  requirement  is
motivated by the fact that kernels run in the data center
are typically two years behind

• No fancy hardware required for basic TCP Offload. The
minimal  requirements  are  for  a  device  with  an
Application CPU and network interfaces,  and lossless
shared hardware queues between server CPUs and App
CPUs

• Minimize  application  changes.  Application  interfaces
for  TCP  offload  can  be  provided  by  a  library,  and
changes to the application should be straightforward. A
zero  application  change  solution  might  be  possible
using  LD_PRELOAD  to  override  system  calls  as  is
done in OpenOnload

• Assume the kernel running in the Application CPU may
be  changed  if  necessary.  Presumably,  the  kernel
running in the App CPU is provided by the vendor and
can be upgraded for new features

• Support  well  known  optimizations  including  polling,
zero copy send and receive data operations, header/data
split, and connection multiplexing similar to KCM.

• For higher levels of performance,  advanced hardware
accelerations in the device can be employed



Design Overview
This section presents the overview of TCP and ULP Offload via
AF_XDP Sockets.

TCP offload is accomplished by offloading TCP processing from
one CPU, the “Server CPU”, to another CPU, the “Application
CPU” or “App CPU”. The server CPU resides in the host server,
and an App CPU resides in a SmartNIC or other “smart device”.
App CPUs run in a constrained environment and are intended for
low level datapath processing, and not for running general server
applications as  CPUs do.  Communications between the Server
CPU and the App CPU happens over shared hardware queues as
shown in Figure 2.

Figure 2. Communications between a server and an Application CPU via AF_XDP 
sockets and shared hardware queues

AF_XDP  sockets  are  used  to  present  a  queue  interface  to
applications running in the Server CPU and the App CPU. In the
Server CPU, the application is a user application that interacts
with the offload device using  the  XDP-Transport library (the
xdp_xport  library).  The  XDP-Transport  library  provides  user
space sockets  to  create  offloaded connections and to  send and
receive data. In the App CPU, the application is a type of TCP
proxy, called the offload proxy. The offload proxy maps messages
received on AF_XDP sockets to socket calls in the App CPUs
networking stack.

 TCP offload
Figure 3 illustrates the components and their communications for
TCP and ULP Offload via AF_XDP Sockets. 

Figure 3. Component diagram of TCP Offload via AF_XDP Sockets. The 
application runs in the server CPU in the left of the diagram, the offload proxy runs 
in the App CPU at the right of the diagram. An application uses the XTS sockets 
interface to offload connections. XTS socket calls are mapped to messages  sent  to 
the offload proxy over AF_XDP sockets and shared hardware queues. The offload 
proxy maps these message to socket calls in the local networking stack 

Figure 4. Server applications to offload proxy communications with multiplexing 
over shared hardware queues. Two application processes are depicted. Each process 
has two threads. Each thread has its own AF_XDP socket that is multiplexed over a 
hardware queue dedicated to the application processes

The user application, shown on the left in Figure 3, links with the
xdp_xport library. Library functions provide proxy management
and data operations over AF_XDP sockets. The AF_XDP sockets
are  bound to TX/RX device queues.  Several  AF_XDP sockets
may be multiplexed over hardware queues as shown in Figure 4.
Multiplexing AF_XDP sockets over hardware queues presents a
trade off between the number of dedicated queues for threads and
the synchronization requirements when multiple CPUs access the
same hardware queues.

The  messages  sent  on  the  AF_XDP  sockets  are  called  XDP-
Transport messages and are encapsulated in Ethernet frames with
an experimental EtherType. Messages may be variable length and
are preceded with a common XDP-Transport header that indicates
a message type. The message type determines the format of the
message body following the header.

XDP-Transport sockets
The xdp_xport library provides various interfaces and functions to
implement  TCP  offload.  The  XDP-Transport library  provides
user space sockets, called XDP-Transport Sockets (XTS sockets),
as  the  application  interface  to  TCP Offload.  XTS sockets  are
based on BSD sockets and have similar semantics. For instance,
xts_sendmsg is  an  analogue  of  sendmsg,  and  xts_socket is  an
analogue of socket. An XDP-Transport socket number refers to a
user space XTS socket,  it takes the place of the file descriptor
argument of  analogous BSD socket calls.

Offload proxy
The offload proxy runs in user space in the App CPU. Its function
is  to  receive  offload  connection  requests  from  the  server,  to
establish and maintain TCP connections, and to proxy send and
receive data. To send data on an offloaded connection, the server
sends a “send data” message to the offload proxy that includes the
data to send; the proxy writes the data on the TCP socket. When
data is received on a TCP socket, the offload proxy sends it to the
server in a “receive data” message. At initialization, the offload
proxy  creates  AF_XDP  sockets  that  are  mapped  to  shared
hardware  queues.  The  XDP-Transport  library  creates  peer
AF_XDP sockets  for sending commands and receiving replies.
Commands  are  sent  by  the  application  via  the  XDP-Transport
library and include requests to create connections, start listeners,
close connections, and send data. Replies are sent by the offload
proxy and include connection succeeded reports, new incoming
connections, and received data.



Identifying connections and listeners
The XDP-Transport library and offload proxy keep identifiers to
connections  and  listeners.  In  the  XDP-Transport  library,  XTS
socket numbers are the identifiers of offloaded connections and
listeners. The offload proxy has its own numerical identifiers for
offloaded  connections  and  listeners  that  don’t  necessarily
correspond to XTS socket numbers. When a message is sent, it
includes the identifier of the connection or listener relative to the
target of the message. The first message regarding a connection
or  listener  sent  by  either  side  includes  the  local  endpoint’s
identifier for the connection. When an endpoint receives the first
message, it records the peer’s identifier in its control block for the
connection.  The  identifier  is  included  in  subsequent  messages
sent to the peer, and the receiver uses the identifier to find the
control block for connection referred to in the messages.

Message Communications
A message based protocol,  called  XDP-Transport Messages,  is
used  for  communications  between  the  XDP-Transport  library
running in the server and the offload proxy running in an App
CPU.  This  section  describes  the  message  format  and
characteristics of communications.

Example processing flow
An example message flow for creating a connection is:

1. The  XDP-Transport  library  in  the  server  sends  a
“connect  request”  message.  The message  contains  an
XTS  socket  and  parameters  for  the  connection
including IP address and port number

2. The  offload  proxy  receives  the  “connect  request”
message, creates a local context, saves the received peer
identifier in the context, and initiates a connection

3. When the connection is established, the offload proxy
sends a “connection ack” reply message to the server.
The message includes both the identifier received from
the peer and the local identifier for the connection

4. When  the  server  receives  the  “connection  ack”,  it
locates the control block from the XTS socket number
in the message. It saves the identifier of the peer in the
XTS socket control block context for the connection

5. At  this  point  the  connection  is  fully  established  and
each  side knows the identifier used by its peer. Any
further messages sent by either side contain the peer’s
identifier for the connection. When either side receives
a  message,  the  identifier  in  the  message  is  used  to
lookup the local context for the connection

Message Formats
XDP-Transport  messages  are  encapsulated  in  Ethernet  Frames.
The general message format is illustrated in Figure 5.

Figure 5. Format of an XDP-Transport message encapsulated in an Ethernet frame

The  Destination  MAC  address  and  the  Source  MAC  address
should be set to a local MAC address of the NIC. A SmartNIC
should  internally  loopback  packets  addressed  to  itself  without
sending  the  packet  on  the  wire.  This  behavior  could  be
implemented in a virtual switch in the NIC.

The server  and Application CPU communicate using messages
sent  over  the  AF_XDP  sockets  and  shared  hardware  queues.
These  messages  are  framed  in  Ethernet  packets  using  an
experimental  Ethernet  protocol  (0x855B)  to  prevent
misinterpretation.

Ethernet encapsulation of messages has some salient properties:

• The  message  interface  between  the  Server  and  App
CPU  is  generic  and  extensible.  Messages  could
potentially have other use cases than just TCP or ULP
offload

• Messages are properly formatted Ethernet frames. The
messages are processed internal in a system, however it
is  conceivable  that  an  Ethernet  protocol  could  be
developed  to  allow  offloading  to  devices  across  an
Ethernet network

The payload of the Ethernet Frame contains the XDP-Transport
message. Each message is preceded by a message header:

struct xts_msg_hdr {
    __u8 type;
    __u8 seqno;
    __u8 data[0];
}
type indicates the message type. seqno is used to enforce reliable
and in order communications (the use of this field is described
below).  data contains the message body and is variable length
where the format and length are determined by the message type.

Structure  definitions  for  various  messages  can  be  defined  and
contain a xts_msg_hdr structure as the first element. For instance,
“struct  xts_msg_connect”  might  be defined which includes the
various  parameters  for  a  “create  connection”  message.  The
structure could be cast as a xts_msg_hdr structure.

Reliable communications
Communication between a server and an offload proxy must be
reliable,  messages cannot be dropped and must be delivered in
order.  This means the shared hardware queue must be lossless
and support in-order delivery. To verify correct operation, each
message has a sequence number in the message header. Sequence
numbers are maintained by each communicating peer as a simple
counter for each AF_XDP socket.  When a message is sent on an
AF_XDP socket, the sender sets the current counter value as the
sequence  number  in  the  message  header  and  increments  the
counter.   The  first  message must  have sequence number  zero.
Message  receivers  track  the  sequence  numbers  to  verify  that
messages are received in order and without loss. If an unexpected
sequence number is received then the AF_XDP socket is in error
and XTS sockets must be closed. This is a fatal error and the best
course of action may be to terminate the application.



Flow Control
Flow control for sending and receiving data on an XTS socket is
managed  by  a  credit  mechanism called  post  credits.  Both  the
XDP-Transport library and the offload proxy provide credits to
their peers for sending data. Post credits is the number of bytes
that are allowed to be posted to the peer. This is either the amount
of data that can be in a “send data” message sent by the server to
the  offload  proxy,  or  the  amount  of  data  in  a  “receive  data”
message  sent  by  an  offload  proxy  to  the  server.  Each  byte
consumes one credit. When data is posted, the number of credits
must  be  greater  than  or  equal  to  the  number  bytes  in  the
operation, and the number of post credits is decremented by the
number of bytes in the operation.

As the  peer  processes  post  data,  credits  are  returned in  credit
advertisements. Credit advertisements can be sent in “pure credit
advertisement” messages or  can piggyback on other  messages.
Each side keeps a counter of “unadvertised credits” that can be
advertised to its peer. Returned credits are additive. For instance,
if  the  current  post  credits  is  20  and  a  credit  advertisement  is
received with a value of 10 then the new post credits is 30.

Offload proxy flow control
The offload proxy maintains its own per socket buffer, the spill
buffer, in addition to the socket buffer for the TCP connection in
the kernel. The spill buffer is used to manage post credits. The
size of the spill buffer is assumed to be at least equal to the size of
the send socket buffer. The sum of the sizes of the spill buffer and
the send socket buffer is the maximum number of post credits
given to the application.

When the offload proxy receives a “send data” message from the
server it performs the following procedures. Note num_to_send is
the number of bytes to send,  num_sent_bytes is the number of
bytes successfully written, POST_CREDITSUNA is the number of
unadvertised  credits,  and  POST_CREDITS_LIMIT  is  the
threshold to send a pure credit advertisement message.

1. If the spill buffer is empty, write new data on the TCP
socket and perform the following:

a) POST_CREDITSUNA+= num_sent_bytes

b) If  POST_CREDITSUNA>POST_CREDITS_LIMIT
then send a pure post credits advertisement and set
POST_CREDITSUNA=0

c) If  num_sent_bytes  <  num_to_send then copy the
unsent  bytes of data to the spill buffer

2. If the spill buffet is not empty copy num_to_send bytes
to the tail of the spill buffer

When a TCP socket becomes readable perform the following:

1. Send  data  from  spill  buffer  (num_sent_bytes is  the
number of bytes successfully sent)

2. POST_CREDITSUNA+= num_sent_bytes

3. If POST_CREDITSUNA>POST_CREDITS_LIMIT then
send  a  pure  post  credits  advertisement  and  set
POST_CREDITSUNA=0

Server flow control
The  XDP-Transport  library  in  the  server  maintains  a  receive
buffer for each XTS socket. The maximum amount of outstanding
data that the offload proxy can post to the application is the size
of this buffer. The procedures for draining the buffer are:

1. The application calls xts_recv_* and reads bytes  from
the  receive  buffer  (num_recv_bytes is  the  number  of
bytes read by the application) 

2. POST_CREDITSUNA+= num_recv_bytes

3. If POST_CREDITSUNA>POST_CREDITS_LIMIT then
send  a  post  credits  advertisement  and  set
POST_CREDITSUNA=0

Message Types
Constants  for  message  types  have  the  form  XTS_CMD_* for
messages sent by XDP-Transport  library in the server,  and the
form XTS_REPLY_* for  messages sent  by the offload  proxy.
The basic XDP-Transport message types are:

XTS_CMD_CONNECT
Start  a  proxy connection.  Message parameters  include the
XTS socket number, IP protocol version (4 or 6), IP protocol
(currently TCP), address and port for the connection

XTS_REPLY_CONNECT_ACK
Report success or failure of a connection request. Parameters
include  the  XTS socket  number  that  was  received  in  the
XTS_CMD_CONNECT message  the  connection  identifier
of the offload proxy

XTS_CMD_LISTEN
Request to create a listener. Message parameters include the
XTS socket number for the listener and the port number

XTS_REPLY_LISTEN_ACK
Acknowledge an XTS_CMD_LISTEN message and indicate
the  listener  started.  Message  parameters  include  the  XTS
socket number and offload proxy’s identifier for the listener

XTS_REPLY_NEWCONN
Report  a  new connection  received on a  listener.  Message
parameters include the XTS socket number of the listener,
the  offload  proxy’s  connection  identifier,  and  the  address
and port number of the peer endpoint of the connection

XTS_CMD_NEWCONN_ACK
Acknowledge  an  XTS_REPLY_NEWCONN  message.
Message parameters include the connection identifier of the
offload proxy, and the XTS socket number
 

XTS_CMD_SEND
Send data and/or close the connection (or listener). Message
parameters include offload proxy’s connection identifier, the
length of data, the data to send, and advertised post credits

XTS_REPLY_RECV
Post  received  data  and/or  report  connection  was  closed.
Message  arguments  include  the  XTS  socket  number,  the
length of data, the received data, and advertised post credits



Application API
The XDP-Transport  socket API is an analogue of the standard
BSD sockets API [4]. Function names have the form xdp_xport_*
where  *  is  replaced  by  the  name of  the  corresponding  socket
function.  For instance,  xdp_xport_socket is the analogue of the
socket function,  xdp_xport_listen is  the  analogue  of  the  listen
function, and so on. xdp_xport_ioctl and xdp_xport_fcntl are also
defined as the analogue of the ioctl and fcntl functions which are
not  strictly  BSD  socket  functions.  The  XDP-Transport  socket
functions are:

xts_socket xts_accept
xts_close xts_send
xts_ioctl xts_sendto
xts_fcntl xts_sendmsg
xts_getsockopt xts_recv
xts_setsockopt xts_recvfrom
xts_bind xts_recvmsg
xts_connect xts_getsockname
xts_listen xts_getpeername

These functions take the same arguments as their counterparts in
BSD sockets. The major difference is the number used to identify
sockets. In BSD sockets, the file descriptors identify sockets-- the
socket and  accept functions  return  a  file  descriptor  and  a  file
descriptor is the input argument to various socket functions. In
the XDP-Transport sockets API, XTS sockets are represented by
XTS socket  numbers  that  are  identifiers  in  their  own  number
space-- the  xdp_xport_socket and  xdp_xport_accept calls return
an XTS socket number and an XTS socket number is the input
argument  to  various  XTS socket  functions.  Note  that  an  XTS
socket number must never be used as input to functions expecting
a file descriptor.

The steps for an application to create an offloaded connection are:

1. Create  an  XTS  socket  by  calling  xts_socket.  The
arguments are similar to those of a socket call to specify
IPv6 or IPv6 and TCP protocols

2. Connect  to  a  destination  by  calling xts_connect.  The
arguments are similar to those of a connect socket call.
The  XDP-Transport  library  on  the  server  sends  an
XTS_CMD_CONNECT message to the offload proxy
over an AF_XDP socket.  xts_connect returns an error
code indicating whether connection establishment was
successful 

3. The offload proxy receives an XTS_CMD_CONNECT
message. It creates a TCP socket by calling socket and
calls connect to establish a connection

4. When the connection is established, the offload proxy
sends  a  XDP_XPORT_CMD_CNX_REPLY message
to the server on the appropriate AF_XDP socket

5. The XDP-Transport library on the server receives the
connection  reply  message  and  returns  to  application
from the xts_connect with an error code for success

The steps for an application to create an offloaded listener and  to
accept connections are:

1. Create an XTS socket by calling xts_socket. Arguments
are similar to those of a  socket call to specify IPv4 or
IPv6 and TCP protocols

2. Start  a  listener  by  calling xts_listen.  Arguments are
similar  to  those  of  the listen socket  call.  The  XDP-
Transport  library  on  the  server  sends  an
XTS_CMD_LISTEN message to the offload proxy

3. The  offload  proxy  receives  the  XTS_CMD_LISTEN
message. It creates a TCP socket by calling socket and
calls listen to listen on the socket. It then calls accept on
the socket in an event loop

4. The  application  calls  xts_accept and  waits  for  new
connections.  Polling,  described  below,  may  also  be
used for asynchronous listeners

5. New connections from the offload proxy are returned
from  accept.  For  each  new  connection,  the  offload
proxy sends an XTS_REPLY_NEWCONN message to
the server. The message parameters include the proxy’s
identifier for the new connections and the XTS socket
number of the listener

6. When the XDP-Transport library on the server receives
a XTS_REPLY_NEWCONN message, it creates a new
XTS socket  for  the connection.  The library sends an
XTS_CMD_NEWCNX_ACK  message  to  the  offload
proxy. The message parameters include the XTS socket
number and  the offload proxy’s  connection identifier
that  was  received  in  the  XTS_REPLY_NEWCONN
message

7. The library returns to the application from  xts_accept
with the XTS socket number for the new connection

Send and receive operations
When an offloaded connection is established the application can
begin sending and receiving data  on the offloaded connection.
The  application  calls xts_send_*  functions  to  send  data,  and
xts_recv_* functions to receive data.

When the application sends data on an XTS socket,  the XDP-
Transport  library  sends  an XTS_CMD_SEND message  to  the
offload proxy. The message contains the data length and the data
itself. The message may also include advertised post credits and
may indicate the connection is to be closed.  When the offload
proxy  receives  the  XTS_CMD_SEND  message,  it  writes  the
message on the TCP socket using sendmsg socket functions.

The offload proxy receives data on sockets by calling  recvmsg.
Received data is  sent to  the server in  an XTS_REPLY_RECV
message. The message contains the length of data and the data.
The message may also include advertised post credits and may
indicate that the connection was closed. When the XDP-Transport
Library in the server receives the XTS_REPLY RECV message it
buffers  the  data  and  provides  it  to  the  application  when
xts_recv_* functions are called.



Polling
Similar  to  Linux  file  descriptors,  XTS  sockets  can  be  polled.
However, since they’re not file descriptors they cannot be polled
directly  by  epoll  [5].  The  strategy  is  to  poll  the  underlying
AF_XDP socket, and then call a secondary polling function on
poll events for AF_XDP sockets. The secondary polling function
checks the status  of  XTS sockets  associated with an AF_XDP
socket and returns events for those XTS sockets that are ready.

To enable polling of XTS sockets, an XTS polling context is first
created  by calling  xts_epoll_ctx_create.  This  function  allocates
and initializes a data structure to hold the context for polling XTS
sockets, and returns a pointer to the allocated structure. One XTS
polling context  is  created  for  each  AF_XDP socket  associated
with XTS sockets.  XTS sockets  are added to the XTS polling
context  by  calling  the xts_epoll_ctl function.  This  function  is
analogous to epoll_ctl and takes the same arguments except that
the epoll file descriptor argument is replaced by a pointer to the
XTS polling context.  Polling is enabled for AF_XDP sockets by
calling  epoll_ctl where the  event argument contains a pointer to
the XTS context created for the AF_XDP socket. 

Applications typically call epoll_wait in an event loop. When an
AF_XDP socket with XTS sockets is ready, an associated event is
returned by  epoll_wait.  The returned event structure includes a
pointer to the XTS polling context associated with the AF_XDP
socket. The program calls xts_epoll which takes the XTS polling
context as an argument. xts_epoll returns a set of events for ready
XTS sockets that were added to the XTS polling context.  The
XTS socket corresponding to each event can then be processed. 

The API functions for polling are listed below:

void *xts_epoll_ctx_create();

Create an XTS polling context. The return value is either a
pointer to the allocated context or NULL in case of failure

int xts_epoll_ctl(void *ectx, int op,
                  int xts_socket_num,
                  struct epoll_event *ev);

Add, modify, or remove entries in the interest list of an XTS
polling context. ectx is an XTS polling context. op indicates
the operation (EPOLL_CTL_ADD, EPOLL_CTL_DEL, or
EPOLL_CTL_MOD). xts_socket_num indicates  the  XTS
socket. ev  is  an  epoll event  structure  that  is  returned  by
xts_epoll when the XTS socket is ready.

int xts_epoll(void *ectx,
              struct epoll_event *events,
              int maxevents);

Return the ready events for an XTS polling context.  ectx is
an  XTS  polling  context.  events is  a  buffer  that  holds
information about returned events in  epoll_event structures.
maxevents is  the maximum number of  events  that  can be
returned.

Example poll loop
The  code  snippet  below  provides  an  example  poll  loop  with
polling of XTS sockets. Modifying a typical application poll loop
to support offloaded connections is expected to be a matter of
inserting code to perform secondary polling of AF_XDP sockets.
Note that an XTS polling context is returned in an event for an
AF_XDP socket.  If  other  file  descriptors  are  also  polled  their
events need to be distinguished from those of AF_XDP sockets.
In this example that is done by including a pointer to an XTS
polling context  in  all  events;  If  the  pointer  is  NULL then  the
event is not for an AF_XDP socket with XTS sockets.

/* Setup code for polling XTS sockets */
struct my_event {
  void *xts_ctx;
  /* Fields for non xdp_xport events */
};
struct epoll_event ev, *evp, evs[MAX_EVS];
int epfd, num, I, xnum, j;
struct my_event *myev;
void *xectx;

epfd = epoll_create(0);
xectx = xdp_xport_epoll_create();
myev = malloc(sizeof(*myev));
myev→xts_ctx = xectx;
ev.events = EPOLLIN;
ev.data.ptr = myev;
epoll_ctl(xectx, EPOLL_CTL_ADD, af_xdp_fd,
          myev);

ev.events = EPOLLIN;
ev.data.u64 = xts_sock_num;
xts_epoll_ctl(xctx, EPOLL_CTL_ADD,
              xts_sock_num, &ev);

/* Event loop for polling XTS sockets */
while (1) {
  num = epoll_wait(epfd, evs, MAX_EVS, -1);
  for (i = 0; i < num; i++) {
    myev = (struct my_event *)
                          evs[i].data.ptr;
    if (myev->xts_ctx) {
      struct epoll_event xevs[MAX_EVS];

      xnum = xts_epoll(myev→xts_ctx,
                       xevs, MAX_EVS);
      for (j = 0; j < xnum; j++) { 
          /* XDP-Transport socket ready */  
          process_xts_socket(
                     xevs[i].data.u64);
      }
    } else {
      /* Process application fd */
      process_ready_fd(event.data.ptr);
    }
  }
}



ULP Offloads
Offloading the processing of  Upper  Layer  Protocols  (ULPs)  is
done  by  creating  an  offloaded  TCP connection  and  “pushing”
ULP functions  onto  the  TCP socket.  Logically,  this  creates  a
protocol stack on the socket. An XTS socket with a pushed ULP
stack is  effectively a  ULP socket that  allows an application to
send and receive Protocol Data Units (PDUs) corresponding to
the protocol of the offloaded ULP. The protocol used with a ULP
socket is programmable such that ULP sockets can be created for
various protocols including RDMA/TCP, NVMe/TCP, and TLS.

In the example of Figure 6, ULP functions are pushed onto a TCP
socket  to  create  “HTTP/2-HTTPS sockets”  [6].  An application
would  send  and  receive  plain  text  HTTP messages  on  such  a
socket.  As  shown  in  this  example,  the  send  and  receive  ULP
processing for a socket may be different. In the send path, the
application sends HTTP/2 requests, and in the offload processing
the message data is encrypted by TLS and the output data is then
sent on the TCP socket. The receive path is a bit more involved.
Data is received on the offloaded TCP socket, and an instance of
strparser (described below) delineates the data stream into TLS
records. The TLS records are decrypted by the TLS layer and the
output is a data stream. The data stream is then processed by a
second  instance  of  strparser  that  delineates  the  stream  into
HTTP/2 messages.  The  HTTP/2  messages are  received  by  the
application on an XTS socket.

strparser
strparser (“stream parser”) is a generic facility to parse a data
stream into discrete ULP messages. strparser can parse any ULP
protocol on a data stream that has a standard message format with
a  message  header  that  indicates  the  length  of  the  message.
strparser has been implemented in Linux kernel where the parsing
of  the  ULP header  is  done  by  an   eBPF  program.  An  eBPF
program  is  attached  to  the  strparser  instance  parsing  a  TCP
connection and provides the instructions to parse the ULP header
and return the length of the next message to strparser. Below is a
snippet of eBPF code parse theHTTP/2 header:

int bpf_prog1(struct __sk_buff *skb)
{
   __u32 w;
   if (bfp_skb_load_bytes(skb, 0, &w, 3))
       return 0;
   return ntohl(w);
}

Figure 6. Example of making “HTTP/2 sockets” with TLS by pushing ULP 
programs

API
ULP protocols are pushed onto an XTS socket by a “ULP push”
IOCTL.  Two  IOCTLs  are  defined:  SIOCPUSHULPTX  and
SIOCPUSHULPRX for pushing ULPs on the transmit side and
receive side respectively.

The argument of the IOCTL is a castable “push info” structure:

struct ulp_info {
    __u16 ulp_id;
    __u8 ulp_parameters[0];
};

ulp_id identifies the ULP being pushed. Identifiers for supported
ULPs can be advertised by the offload device using an out-of-
band mechanisms. ulp_parameters are variable length parameters
specific to the ULP being pushed.

The pseudo code to create the pushed protocol stacks for HTTP/2
sockets illustrated in Figure 6 is:

s = xdp_xport_socket(AF_INET6, 
             SOCK_SEQPACKET, IPPROTO_TCP);

/* Push ULPs for receive side */
xts_ioctl(s, SIOCPUSHULPRX, 
          &strparser_tls_info);
xts_ioctl(s, SIOCPUSHULPRX, &tls_rx_info);
xts_ioctl(s, SIOCPUSHULPRX, 
          &strparser_http2_info);

/* Push ULPs for transmit side */
xts_ioctl(s, SIOCPUSHULPTX, &tls_rx_info);

ULP protocol handshake
In some cases, a ULP protocol is used starting from the first byte
of  a  TCP connection,  however  in  other  cases  there  may be  a
protocol  handshake  over  the  TCP  connection  that  precedes  a
switch to using an Upper Layer Protocol on the connection. An
example is when an HTTP connection on port 80 switches to use
TLS encryption. Note that once the ULP switch-over happens, for
the rest of the lifetime of the connection only ULP messages of
the  negotiated  protocol  are  used.  To  support  ULP  protocol
handshake,  the  offload  proxy  connection  can  be  set  to  “peek
mode” at the beginning of a connection. While in peek mode, the
offload proxy peeks the data  in  the TCP socket  buffer  so that
received data remains in the socket buffer (by using MSG_PEEK
with recvmsg). The peeked data is sent to the application that can
parse the data and determine  the ULP functions to be pushed.
Once  the  proper  ULPs  have  been  pushed,  the  application
performs  an  XTS  IOCTL  “end  peek  mode”  operation
(SIOCENDPEEKMODE). The arguments to the IOCTL include
the number of bytes to drop from the first received byte on the
connection. When the proxy server receives the message, it reads
and discards the number of bytes to drop. Subsequently, normal
operations commence where data is read from the TCP socket and
is processed by any pushed ULPs and PDUs are delivered to the
application.  



Implementation
When ULPs are offloaded to an App CPU, it is the discretion of
the device how to implement the datapath for the protocols. In the
simplest case, all of the ULP processing could be done in the user
space offload proxy. Alternatively, kernel functions or hardware
offload  could  be  employed.  A hybrid  approach  could  be  used
where some ULPs are offloaded to the kernel or hardware, and
others are implemented in the user space proxy. For instance, in
the HTTP/2 example illustrated in Figure 6, the TLS processing
could be offloaded to a NIC hardware that supports TLS offload,
but the strparser for delineating HTTP/2 messages might run in
the userspace offload proxy.

Security
Security is provided by mechanisms of AF_XDP sockets.  This is
supported by enforcement of permission to allow a program to
create an AF_XDP socket as well as by eBPF/XDP programs that
are attached to network interfaces and can implement arbitrary
security  policies.  Note  that  scalable  implementation  with
security is a topic for future work.

Performance Results
The  primary  goal  of  TCP offload  via  AF_XDP  sockets  is  to
offload CPU cycles from host CPUs. Figure 7 compares the host
CPU utilization with and without offload. Note that this data is
based on preliminary analysis and extrapolation of a “proof of
concept” implementation. Future work includes a more complete
implementation and detailed performance analysis.

Figure 7. Performance of TCP offload via AF_XDP sockets. The graphs compare 
the relative host CPU utilization with and without offload. The graph on the left 
compare no TCP offload with TCP offload, and the graph on  the right compares 
TCP and TLS with and without offload

The primary  performance  benefits  of  TCP offload  come  from
eliminating the instructions in the execution path for processing
protocol headers, and in the case of a ULP, such as TLS, there are
also benefits in offloading the algorithm. AF_XDP sockets are
expected  to  have  inherently  less  overhead  of  typical  protocol
sockets like TCP and UDP sockets.  Managing the offload and
supporting an API does require some overhead in userspace. This
is mostly a case of dereferencing user space sockets in library
functions. Flow control is implemented as part of the user space
sockets library, it’s not particularly more complex than managing
socket buffers for flow control, and note that pure flow control
messages sent to and from the offload device can be minimized.
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