TCP and ULP Offload via AF_XDP Sockets

Tom Herbert, Felipe Magno de Almeida
NetdevOx17



THIS IS NOT TOE!!



The brief history of TCP Offload

e TOE: TCP Offload Engines, offload TCP
to specialized hardware

Promise was great performance

TOE was popular 20 years ago

TOE startups, Windows Chimney

Open Onload, run TCP stack in
userspace, socket intercept using
LD_PRELOAD

Traditional TOE
& } [
Applications | Applications |
______@-____ T, )| || —
"';? ] fo?era-l-,iv\s
|
® ) XI System
_______ , s ] | ERTUTTIRS SITTVINITIN | g
TC? J :
v :
': : Hardware
l\:lc NIC :
‘ 3 3 ] |
PHY PHY '
=== 3 | Jy_ .




But TOE was a really, really bad idea!

Security updates
Point-in-time solution Applications ]
Different network behavior

Performance

Hardware-specific limits

Resource-based denial-of-service attacks
RFC compliance

Linux features

Requires vendor-specific tools

Poor user support

Short term kernel maintenance

Long term user support

Long term kernel maintenance
Eliminates global system view

Source: https://wiki.linuxfoundation.org/networking/toe




Modern motivations for TCP and ULP Offload

e Offload infrastructure processing from server CPUs
e Not just TCP offload, but also ULP offload like RDMA, TLS
e (and yes, higher throughput and lower latency would still be nice)




TCP and ULP offload via AF_XDP sockets

—————— = s = =TT
e Server CPU and App CPU communicate | | Server CPU : | AppCPUIn SmartNIic
. | Application I | O_f[l(_)?d proxy I
over shared NIC queues via AF_XDP I S : | |t e e
| e - |
. |
e Messages sent on queues contain : : |
directives and data -

e Application uses “XTS sockets” like
normal socket calls. Socket calls are o
mapped to messages '+ ‘Message format

Ethernet header

Destination MAC address

e App CPU runs an offload proxy that ST
proxies between queues & TCP sockets S e




Operations

Connect

xts_socket()

\

xts_conneci() -+  XTS_CMD_CONNECT

%
N
\
Y
\\\
R XTS_REPLY_CONNECT_ACK
xts_recv() <«---- XTS_REPLY_RECV
xts_send() ---- XTS_CMD_SEND

- socket()
1
v
connect()
R -
v
-- recv()
--> send()

a4

Connection
established

)
Receive

data

SR
Send data

—

Listener

xts_socket()

\
xts_bind() A
v
xts_listen() ---»  XTS_CMD_LISTEN -

"\ XTS_REPLY_LISTEN_ACK -~~~

v

xts_accept() w R
1 \I

“~» XTS_CMD_NEWCONN_ACK

xts_recv() <---- XTS_REPLY_RECV - -

xts_send() ---- XTS_CMD_SEND -

\ ~.  XTS_REPLY NEWCONN -~

socket()

\/
bind()

v
listen()

\/

accept()

Se

recv()

send()

A’

|
| |Connection
. established

SR
Receive

data

)
Send data

———

danda



Design points

HW requirement: Shared queues must be lossless and in order delivery
Socket flow control is needed, done by a credits mechanism

Message are encapsulated in experimental EtherType frame

Security is derived from AF_XDP sockets framework

Polling of XTS sockets is described in paper

No kernel changes, no app changes if with LD_PRELOAD

Supports zero copy, header data split, packet message steering
AppCPU can take advantage of HW accelerations




ULP offload

o Create “ULP sockets” to send and receive ULP messages
e Push ULPs onto a stack
e strparser to delineate ULP messages in a stream

“HTTP/2 socket”

xdp_port socket
SOCK_SEQPACKET

Receive HTTP/2

Send HTTP/2 messages

messages




Performance*

No TCP offload TCP offload TCP+TLS no offload TCP+TLS offload

*Relative performance based on preliminary data




Implementation status and future work

Working on Bluefield

xdp_xport library for applications
Userspace proxy running in SmartNICs
First version into open source in Q124

Future work:

In depth performance analysis

Advanced features

LD_PRELOAD for zero application change
Support for various ULPs




Thank You!




