
CXL and SmartNICs: a paradigm change?

Alejandro Lucero Palau
 alucero@os3sl.com

Abstract
Efficiently sharing memory between CPUs and high performance
devices like GPUs is what CXL tries to achieve. This new
approach will bring changes to how operating systems do things,
and networking will also be affected sooner or later. Although
similar functionality can be achieved with adhoc vendor
pathways, CXL will allow simpler hardware designs, a protocol
more suitable than PCIe for memory load/store operations by the
CPUs, coherency managed by the protocol, and, what this paper
states, the opportunity for standardizing how the control path is
programmed by the Host into SmartNICs with Match and Action
Tables. If the Linux way of supporting such control path, that is a
slow path through the kernel and a fast path through the
SmartNIC, is assumed to be the right solution, an CXL-based
design could overcome the limitations of current kernel approach
with TC and netfilter/conntrack when used in massive
virtualization scenarios. Moreover, the offloading of rules and
flows could not only be standardized but simpler and more
efficiently done through CPUs memory operations instead of per-
vendor driver code requiring helpers like kworkers or suffering
hard-to-parallelize TC functionality. A paradigm change like this
could open new possibilities bringing closer the dream of full,
private and compartmentalized programmability in the network
control path required in multi-tenant cloud networks.

Keywords
CXL, SmartNICs, MATs (Match and Action Tables), slow path,
control path offload, OpenFlow, Clouds Multitenancy.

1. Introduction
New technologies can always be disruptive but only if
achieving the expectations once the marketing dust settles
down and the advantages can clearly be seen without the
blurry vision of just-to-prove promises.

Memory is one of the most disruptive in potential when
the term includes volatile and non-volatile options, with
the industry looking for the Holy Grail of a high
performance, low latency, low energy and non-volatile
solution. The disruption would not only be in the hardware
world but also in operating systems design since the
current memory hierarchy would need a revision in terms
of why operating systems do things as they do now.

While the memory-type innovations, so promising some
years ago, have not achieved the expected status, except
for some minor options for embedded systems, and, of
course, the use of SSDs in servers, the memory
connectivity revolution could bring such a disruption
sooner, and CXL seems to be the standard gaining
momentum (without discarding other options worth to
consider and equivalent in the functionality envisioned).

CXL [1] can be seen as an PCIe extension. In fact, the
current PCIe protocol is available with the CXL.io
specification, one of the CXL protocols. The other two are
CXL.mem and CXL.cache and the ones to focus here. The
interesting thing about CXL is the handling of memory
coherency between Host and Device, along with a more
suitable protocol for the bandwidth and latency demanded
by load/stores when performed by the CPUs. Depending
on the requirements three different device types are
defined:

1. Type 1 device using CXL.io and CXL.cache, the
idea being the device coherently caching Host
memory. The device can have a memory, apart
from that dedicated to the cache involved, but it is
not managed by the Host.

2. Type 2 device using the three CXL protocols, the
idea being a type 1 device plus device memory
managed by the Host.

3. Type 3 device using CXL.io and CXL.mem, the
idea being memory extensions. This can create
memory hierarchies to be used by the Host and
will likely require main changes to how the Host
manage them, more complex than current NUMA
memory management.

For the sake of what this paper tries to discuss, it is
irrelevant the specific hardware/standard behind, CXL or
equivalent, the focus being what this technology brings in
for solving, improving and extending what SmartNICs do.
Regarding the device type for an SmartNIC implementing
a CXL-based solution as presented in this paper, a type 1 or
type 2 could theoretically work, but there are other details
like counters which could imply a type 2. It is not the goal
of this work to go into that level of detail but just an
intellectual exercise about the possibilities.

More specifically this paper covers what SmartNICs
with Match and Action Tables (MATs) require and what a
CXL-based solution could mean. The discussion is based
on how Linux deals with the control path programmability,
the support of offloading such control rules (match and
action) and flow states (connection tracking) to SmartNICs
and the necessity of having both, the slow path, through the
operating system, and the fast path, through the hardware,
as current OVS-TC offers. Other solutions as implemented
by private offload mechanism could also obtain better
results and simpler designs, but it is in the dual path where
the benefits can be higher.

The Linux Traffic Control (TC) [2] was not designed for
what SmartNICs try to solve in the massive virtualization
area, with another Linux network component, netfilter,
suffering similar scalability problems when hundreds of

1

thousands or even millions of connections need to be
constantly tracked. This is not reported (or not loud
enough) as a problem because the Linux kernel TC is the
slow path, and it is not expected to be a performance issue
since most of the traffic will be handled by the specialized
SmartNIC. Of course, this is true for the case of such a
hardware, but even in this scenario the current kernel
implementation is arguably not good enough because the
slow path can eat a considerable amount of cpu cycles, and
any latency when offloading the control rules or flows will
add up to the problem. The misconception is likely due to
considering the setup for the control rules something static
or quasi-static, meaning that happens once when the
related VM is deployed, but this is not always the case.
OVS default behavior is to add/remove the required control
rules based on traffic, so the setup is dynamic and the rate
of change dependent on the specific system needs and
configuration. This is even worse for offloading flow states
which can fully stress out the offloading mechanism if
thousands or dozens of thousands of connections appear or
disappear per second, as it can be expected with VMs
acting as servers. If we consider the slow path as the only
path, what is the case for supporting more rules/flows than
what the hardware is able to cope with, or for those
complex match and actions not fully supported by the HW,
improving the slow path acquires more dramatic urgency.
Although important by itself, this paper focuses on the
potential benefits for the dual path when using a CXL-
based design.

Interestingly, there is a related technology, P4 [3], which
can alleviate the scalability issues along with adding the
promising land of a full control path programmability. This
is not only in the hardware side P4 was originally designed
for, but also in the slow path where the way packets are
processed is (or should be) equivalent to what the hardware
does, and due to hardware limitations, usually a superset of
those control rules/flows. With a P4 frontend interface and
a software P4 interpreter/compiler, the same functionality
can theoretically be obtained, both, in the slow and fast
paths. Leaving aside how this will be finally (if so)
implemented, and assuming the performance will
significantly improve (and therefore current TC and
netfilter conntrack bottlenecks overcome) a following set
of questions arise: could the offload of those match and
action rules be also improved for minimizing the cpu
required even with such an optimized new packet
processing component? How can the current per driver
vendor code be avoided for translating the equivalent
TC/conntrack semantics to those per vendor proprietary? If
same P4 code is being used, by software and hardware,
could the same data tables in a single place/memory be
used?

It could be argued that every vendor will implement the
hardware MAT tables differently so this cannot be imposed
or an agreement for a standard reached, and that it will lack
the flexibility required. But it is not the specific and per-
vendor hardware tables the ones to converge but the
memory backing their contents. For an SmartNIC
implementing those MATs hardware tables and focused on
massive virtualization, just a small set of the rules or the

flows to work with will be populated into those tables, with
most of them being in device RAM memory. How the
hardware tables can be populated based on the memory
contents is up to each vendor, where several options are
available, like reserving HW table entries for specific
rules/flows/clients, implement specific eviction/scheduling
where those HW table entries will be populated based on
generic or specific necessities, or even to have two
different fast paths inside the device, one being the fast-fast
where the packets can be handled using the HW table
entries, another where the packets are handled using the
device memory. With rules and flows kept in Host DRAM
for the slow path, and most of them also in the device
DRAM, if we put a CXL-based design into the picture,
same contents could be used by the device or by the main
cpus in the slow path: just updating at specific memory
addresses once and each side will use them. This is where
the CXL device type will matter. A type 1 device would
imply the Host memory being updated and the Device
memory being a cache of those contents. In this case the
slow path will get the entries to work with from Host
memory. If a type 2 device is used, the CPUs will update
the device memory, so cache misses when accessing
rules/flows entries by the slow path would imply getting
the contents from the device (transparently performed by
the CXL protocol). As commented before, which type to
use needs to be studied in more detail, and maybe that
could be just a vendor decision.

While, as commented previously, device memory can be
directly accessed from the Host cpus as any other memory
if mapped accordingly (PCIe BARs regions or specific
memory mapping in embedded designs), and surely some
closed solutions make use of this possibility, with CXL
there exist important improvements as already explained.
In any case, the rules/flows entries in the device memory
can be populated/depopulated by the Host CPUs with
load/stores implying a smooth offloading process.
CXL can be a big change and make possible other
functionalities arguably required for achieving the full
dream of virtualization where full confidentiality can be
provided, which is explored briefly in this document. If we
put all this together, if the holistic approach is pursued, the
standardization about how to write the memory is likely
not needed at all: a fully programmable datapath would
give cloud tenants the power of defining that themselves,
where the rules to apply will be in sync with what the
hardware supports. Even if the fully programmability is not
achieved or not in the short term, what unsurprisingly
seems to be harder in the hardware side, the slow path
programmability could not need that standardization as
long as the programmability is offered by each vendor.
This is a more likely outcome in the short term than the
fully programmable hardware datapath, and the CXL
approach can be useful in any case.

In the next sections the problem with the current slow
path implementation is described, then the specific
problem of offloading rules/flows to SmartNICs when used
in massive virtualization deployments. Next we will
compare the current offloading process to a theoretical one
based on CXL. It is worth to mention this design would

2

need the scriptable P4 (or something equivalent) in the
slow path, what could be seen as a reinforcement of such
an idea, or maybe a mutual reinforcement. Finally, a
further exercise is performed looking at possibilities in the
Openflow area, multitenancy support and per-client control
path ownership, as another CXL potential disruption.

2. SmartNICs: MATs and DRAM
Terminology can always be confusing, so it is necessary to
state what kind of SmartNIC we mean in this discussion.
Servers can run dozens of virtual machines and code
executed inside those virtual machines (VMs) can achieve
native cpu execution except when I/O is required, which is
emulated and therefore suffers from extra work needing
cpu cycles.

SmartNICs can significantly improve this with the code
inside the VMs doing I/O straight to the hardware instead
of going through the host software emulation. The idea is
to give each VM a chunk of the hardware, but then the
problem is how the hardware knows what to do with the
I/O coming from those VMs.

Reducing the discussion to networking, the hardware
needs to have rules for handling those packets, and for
figuring out how packets coming through the wire need to
be dispatched to the right VM. For doing so efficiently,
there are hardware CAM tables containing those rules to
apply. A rule defines first which packets the rule should be
applied to, and then which actions to execute for those
packets, like redirecting them to a specific port or
adding/removing a tunnel header.

Hardware CAM tables are how Match and Action Tables
(MATs) can be more efficiently implemented, but they are
power hungry beasts because the matching happens in
parallel implying a lot of gates being involved at the same
time. The dimension of those CAMs does not suit what fat
servers require, not just in terms of number of rules but
also regarding the flows to be tracked (if this service is
offered what seems to be common nowadays). The solution
is to back up the rules and flows with DRAM and use
hashing for obtaining the rule or flow to work with. The
relationship between those rules and flows in DRAM and
the CAMs is up to the hardware design, but the DRAM
will be used for a massive virtualization scenario. So, the
question is how those CAM tables and that DRAM end up
being populated with the rules and flows required.

The Openflow/OVS way
The Open Virtual Switch (OVS) [4] was designed
following the Openflow [5] standard, the control and
forwarding paths of an SDN [6] architecture. The idea
being a centralized controller having the information about
how a VM being deployed needs to be configured in terms
of its networking communications. The host executing the
specific VM will get that information from the controller
through the OVS component which configures that VM
networking accordingly.

OVS is implemented with two cooperative components,
one inside the kernel and the other in user space. The one
inside the kernel does the handling for those packets

coming from the OVS ports connected to VMs and from
the wire. If a packet did not match any configured rule, so
no action can be applied, it is sent to the user space
component. At that point the OVS user space component
can know what to do with the packet or maybe it requires
to ask the controller about it. Once it does know, a new rule
specifying the handling will be configured into the kernel
side and the packet injected back to the kernel for being
handled. The in-kernel rule configuration implies to install
it inside the data structures used by OVS which evolved
through the different versions and it is well described in
[4].

Before talking about when hardware offload changed
this picture, it is necessary to comment the rules to work
with can be installed at the time of the VM deployment,
then being a static rule configuration happening once. But
this is not always the case and OVS by default keeps this
dynamic based on the traffic itself, and rules being
installed and removed constantly. That is why the way the
rules can be updated, in software or in hardware, does
matter, and any limitation in that regard having a
significant impact on the full system, not only in the
related VMs. This rate of change is also unarguably
important when the conntrack functionality is considered
along the rules.

While OVS helped to deal with the requirements for
networking in virtualization, it is a software solution being
executed in the same cpus used by cloud clients. Indeed the
way VMs were attached to OVS was through I/O
emulation requiring more cpu cycles to be stolen from the
clients or just those cycles not being monetizable, and of
course the performance suffers. Hardware came to the
rescue where the OVS configuration could be applied and
packets handled without host intervention. Or so once the
rules are offloaded. The problem in the Linux world was
how to perform such an offload. At the time there were
private per vendor solutions but attempts to include them
in the kernel were rejected. It was not the first time such
kind of divergent implementations had to be added to the
kernel with the usual solution being to make it a
configurable option selecting which solution to use, but
requiring, of course, some minimum convergence for
allowing such flexibility. In this case it did not happen that
way because it was considered the Linux Traffic Control
(TC) component could be used with minor changes for
supporting hardware offload. It required though the TC
infrastructure being part of the OVS kernel component
with the rules to match with and the actions to perform
being those already present (or easily extended as it
happened with TC flower).

3. TC and conntrack bottlenecks
As mentioned, offloading the control path was under
discussion for several years and it was finally accepted as
an extension to the Linux Traffic Control Infrastructure. It
is easy to criticize that decision a posteriori but it can be
arguably said that:

1. The number of rules/flows to support was
considered but not its rate of change.

3

2. Any overhead makes things far worse than just a
temporal degradation.

3. It was good enough for Diffserv [2] but not for
massive virtualization.

As already commented, the rules to apply when a new
VM is deployed are not (usually) static but dependent on
network traffic. That is where the fast path/slow path
appears, initially the fast path related to packet handling
inside the kernel, the slow path meaning the packet needed
to go to user space for deciding what to do. With the
hardware offload the fast path is the hardware and the slow
path the software handling by the host which included the
kernel and user space handling. Therefore, how the rules to
act on packets change, its rate of change, it does matter.
The second point is even more relevant for hardware
offload because the latency to offload, the latency until the
hardware can use the offload rule, implies further packets
will need to go through the slow path, the host, which
requires cpu cycles contending with the needs from VMs
and with the slow path itself dealing with other flows.

Five problems with TC
The first problem with TC is it is not designed for updating
a qdisc in parallel. Let’s see how this can affect the rate of
change with a vxlan device. VMs belonging to the same
virtual network and running in different serves
communicate through a tunnel which they are not aware of.
This tunnel is deployed and handled by the virtual network
provider and with vxlan tunnels a vxlan device is created
and therefore a qdisc. It is in this vxlan qdisc ingress (after
the UDP layer has detected the packet belonging to a
tunnel connection) where the rules will be added, but
because this sequential updating restriction, concurrent
flows reaching the host and being handled by different
cores through an efficient RSS (with inner headers for the
case of tunneling) will contend for updating the qdisc. Not
so long ago someone tried to submit a patch for adding
parallelism, but it was discarded because it required locks
which are not easy to handle inside TC, and because that is
the control path after all, which does not require this kind
of optimizations. With the right motivation this could
change but this is not the only problem.

The second problem with TC is those qdisc rules, once
they have been installed, will be checked out sequentially
until one matches the packet. This is not so bad for a low
number of rules to work with per qdisc, but all the cpu
cycles required here are a problem with the current
networking performance available with gigabit cards.
Again, TC was designed for supporting the Diffserv
architecture at a time where the needs for massive
virtualization were distant and where the gap between the
cpu packet handling and network cards performance was
not so bad. User space solutions like netmap or DPDK
appeared because this gap increased (along with the
problems coming with system calls and interrupts). Should
the kernel move to another model or maybe should it keep

TC along with a more suitable solution for massive
virtualization?.

The third problem is related to parsing and matching
what is performed for each rule until one match is found.
Other implementations dealing with matching packets are
far better in this regard (see [4]) which comes from the
necessity of dealing with a far higher number of rules to
match with. Also, the current parser, kernel flow dissector,
can have been useful until now or still up to the task for
certain scenarios, but its performance, leaving its
implementation clarity aside, highly improvable [7].

A fourth problem with TC is the syntax gap. For massive
virtualization and with OVS-TC relying on Openflow,
those rules defined in Openflow syntax need to be
translated to TC. This is even worse with hardware offload
where such a TC rule will need to be translated to the
specifics of each vendor by the related driver.

And the fifth problem with TC is its ossification.
Interestingly this was something always favorably to
software versus hardware solutions, but supporting quickly
new protocols requires another approach. This could
hopefully be overcome soon if the P4 software and
hardware datapaths end up being a reality.

SmartNICs can alleviate these problems because the
datapath will be in the hardware. Right? Well, the slow
path is still there with SmartNICs, and here it comes the
bad news: any latency offloading rules implies more packet
through the slow path, which implies more latency for the
offload again.

Conntrack design is probably better suited for
supporting a higher load of processing, at least for
checking if a particular flow is already being tracked. But
conntrack as a TC action depends on the rules execution
and therefore suffers from the sequential process.

Offloading
TC rules and conntrack flow states can be offload to the
hardware. The limitations exposed have an impact on the
offload because it cannot happen faster than TC or
conntrack add rules or flows. But the offload itself has
problems.

A TC rule to offload needs to be received by the related
hardware driver, what is currently happening at the end of
the TC rule insertion, and this can not happen in parallel as
we have mentioned in the TC problems list. Then the
driver will check for the hardware supporting the rule
requirements, and if supported, it will translate the TC rule
to the format required by the hardware. Interestingly, data
about the rule to offload is kept by the driver for dealing
with new necessities (updating, removing, counters). At
that point a specific per-vendor mechanism is used for
sending the rule and, usually, waiting for the completion of
the operation. This is of course up to the vendor where the
possibilities are a specific hardware block, firmware, or
both.

For conntrack the offload does not happen
synchronously but through kworkers. Those works will,
when processed by the kernel kworkers, end up reaching
the driver and a similar process than with TC rules will
occur, although usually simpler in this case. Currently the

4

implementation creates two different works for a flow
offload, one for each direction. It is not necessary to say
how the system will use the cpu for executing those
kworkers will have an impact, and the fact of not existing
the notion of processing flows batches makes this
mechanism a problem with massive virtualization where
conntrack flows will be inserted and deleted constantly
based on traffic.

The previous picture tries to show the current processing
when TC rules and flow states are offloaded. The Host
needs to process not just the TC insertions and conntrack
flow states changes but the specific driver will need to do
more work before the data ends up in the hardware. The
final latency has two components here, the latency
introduced by the kernel and the latency introduced by the
driver/hardware for exchanging the control data. There is
another component and this is related to how the hardware
will handle the control data until it is really used by the
hardware datapath. There are different possibilities for
implementing this final step, like redirection to DRAM or
populating the MATs with the new data, and that can be
done through specific hardware design or by firmware. But
apart from the specific design, avoiding latencies here is
not trivial since the mechanism needs to be designed for
the rate of change required.

An SmartNIC with a DRAM will be constantly using the
DRAM when fully operative, otherwise the device

design/dimensioning is arguably inappropriate. If so, does
it not make sense to use the direct DRAM population from
the Host and with the best available technology? A
counterargument is some rules/flows could be installed in
MATs with lower latency through a direct-MAT
population, but this requires a carefully and costly design if
unexpected latencies needs to be fully avoided. If this
minimal low latency is required, which can only be done
up to a point (MATs size), some internal mechanism could
be added for DRAM rules/flows entries triggering such a
population based on certain flag or similar signal.
Simplifying the control path inside the device has also the
advantage of keeping the focus on the datapath, in this case
focusing on how the interaction between MATs and
DRAM, and any intermediate cache, can be improved.

4. CXL into the picture
It should be clear at this point which are the main problems
with the current Linux way. Maybe it is also worth to
discuss if the slow/fast paths is the best option. This paper
assumes it is, so just a few lines to back this up:

• Overcoming the hardware resources limitation.

• Matching or actions not supported by the
hardware.

• Flow initialization based on host-only
functionalities like conntrack. Currently conntrack
state can be offloaded but only when the state is
established by the software.

As commented earlier, CXL does also make sense
without the dual datapath since it can potentially (based on
the hardware design though) minimize the latency of rules
or flows offload, using less host cpu cycles and likely
saving energy with a more efficient protocol than adhoc
hardware designs.

With the dual datapath, CXL could be used just for the
offload, with vendor drivers writing to CXL memory
addresses. This is the more conspicuous use and likely the
first step towards a fully CXL support, but although it
would benefit from the CXL protocol advantages, it would
not exploit the possibilities. So, which are the extra gains
for the dual path scenario?

CXL was designed for the requirements of sharing
memory between devices and cpus where the coherency
plays a key role. With the necessities of massive
virtualization, the amount of memory required for keeping
the rules and flows is significant. With the dual datapath, as
it is currently implemented, that amount of memory
doubles (or triples if the data kept by the driver counts), so
could not the same memory contents be used by both, the
hardware and software datapath?. This is theoretically
possible but there are some caveats which require further
discussion. Before that, a second potential advantage needs
to be presented.

While a single path with an adhoc vendor solution can
write to CXL memory the specific contents with no
constraint, the dual datapath requires a generic way as a

5

frontend with specific per vendor drivers as backends.
Removing this indirection is possible if there is just a
generic way which implies agreement or standardization
about what to write to CXL memory. It is important to note
this is not about restricting or forcing vendors what to do
since the secret sauce about the MATs design and any
packet switching details can be kept: the only requirement
is about how the rules and flows are saved in the DRAM. It
could be argued that format will be intimately related to
such internal design, but, in that case, who should be doing
the required translation? If it is before the CXL memory is
written, that will be charged on the host cpus. If it can be
performed by each vendor inside the device when MATs or
intermediate caches are populated, the burden will be on its
vendor design. Moreover, could not be a fully P4 solution,
where the hardware and software will depend on the P4
design, the one in charge of how to populate the DRAM?
Finally, it is worth to question if the several translations
performed today, the syntax gap, could not be avoided, at
least for the hardware, if the devices would pursue
Openflow compatibility. Could a fully P4 solution have the
right format already in the Openflow controller?

Now, if we join the last two concepts, there it comes an
interesting solution:

The picture is hopefully showing the design possibilities.
The memory written by the Host, when rules or flows need
to be updated, is a CXL memory. Once there is a change,
thanks to the CXL coherency, both, the device and the
Host, will see the same tables, not the MATs but the data
structure to be used in DRAM. When the slow path is

executed in the Host, the CXL coherency appears, with the
cpu using CXL memory for data not present in the cpu
cache. Those cache misses are likely handled with higher
latency than accesses to the Host DRAM, although this
depends on the CXL device type. If the data is in Host
DRAM and the device is caching the data, the Host
memory needs to be dimensioned properly. If the device
DRAM keeps the data and the Host is caching, the
dimensioning depends on the vendor. The data will only
really be in one place in the second case, but options
should be considered. As the picture also shows, there is
part of the table not under CXL domain: overcoming the
HW resources and supporting by software what the HW
does not.

In a dual datapath scenario this design implies the
hardware will get the new control data as soon as the
beneath hardware allows and not dependent on middle
layers adding latency and subject to potential bottlenecks.
As we have shown previously, current offload mechanism
through specific drivers are not needed, and hopefully not
translations either. Is this an impossible dream?

The caveats do exist, but they are not unbearable. The
most important one is with this design the software and
hardware need to use same algorithm for accessing the data
in the shared memory. The most likely solution seems to be
a number of cuckoo hash tables as some current hardware
switches are using. But this does not need to be fixed but
through a configuration option based on what the HW
requires. The initial option could likely be just an
agreement following the current state of the art, but this
design would surely lead to further research and other
options appearing in the following years. As an example,
another potential solution with CXL memory could be the
control data not really written by the Host but by specific
HW dealing with the intrinsics of the data structure used,
where updates (as with cuckoo hashes) could be harder and
therefore potentially accelerated/controlled by specific
hardware elements. Of course, the software should have a
read-only way for using the data in the slow path
execution. The CXL advantage would still be there with
the writes going to specific hardware buffers where those
write/updates accelerators will use them. This is quite
similar to how GPUs currently receive commands from the
Host and the performance and design of those elements
will set the latencies. Finally, and again, a full P4 solution
involving the software and hardware datapaths could
potentially include the way of accessing the data from both
sides efficiently.

The host writing straight to the CXL memory has
another important advantage: this is orthogonal to other
interesting things the host needs to do (or could do). One of
those things is yet another intellectual exercise about
further CXL possibilities in the SmartNIC area, specifically
now about how to support multitenancy with the proper
confidentiality and performance and through a simpler
interface than with adhoc solutions. This will be discussed
in the next section but before that, let´s talk about hardware
counters.

6

Reading counters on demand with CXL
Those working in the SmartNIC area through the last 10
years are well aware of how offering counters to the Host
can be a nightmare by itself. Having multiple wire
interfaces in a network card and giving stats about how
packets are sent and received is a tractable problem but that
explodes when you have dozens or hundreds of VFs plus
hundreds or thousands of rules, actions and flows.

A common solution is to send the counters regularly to
the Host which requires the related driver passing those
counters to the related software counters. The data can be
sent through a special channel or just using the datapath
and some filter in the driver for detecting those special
packets. The work is not negligible and the time between
the counters being packed into those special packets until
the interested user gets them can be significant. Moreover,
all the work done could be for nothing if none is interested.
So, what if those counters are read on demand?

Here is where the cache coherency could be interesting
because the coherency is not needed until the user reads
them and just those the user is interested in. The
granularity of this coherency is important and something to
look at, but the main problem to solve here is how the user
knows about the memory address to read from, and more
importantly, how the hardware should keep them. We are
not going to discuss this further, but it is important to note
the fact that we mentioned the user and not the kernel
knowing about how to read the counters. The next section
explains what.

5. Openflow and Multitenancy
The orthogonality of a CXL design could be the key for
achieving a dream in the SDN world: the programmability
of the control path under the client command.

So, what is still needed for achieving the network
virtualization dream? The answer, although probably not
complete, is threefold:

1) Two-level control path: cloud provider at the first level,
tenants at the second one.

The Cloud provider has to give a network to the client, a
virtualized one. But how the exchanges inside that network
happen should not arguably be under the control of the
cloud provider. Some clients will be happy to forget about
it and have the work done somehow with a default control
path configured by the cloud provider. But surely big
clients do not want to leave such a control to the cloud
provider because it gives a lot of information about what is
being done by the client. Not just how the communications
are being done but also what communications are not
allowed is information none with security concerns is
happy to unveil. Moreover, a security breach in the host
could manipulate that control in nefarious ways.

This has been proposed in Openflow [8][9][10][11] for
allowing clients to program routers slices assigned to them.
We state that there exists the same need for those private
slices with the SmartNICs control path being under the
control of the client owning the VM. Note this does not
mean under the control inside the VM.

2) Fully isolation and privacy about control path
set/required by tenants inside their network.

Because the previous point, the control should not only
be performed by the client but it needs to be protected.
This includes the previous statement about a security
breach in the host not able to modify the control path of a
client, and also the fact that the control path inside the
virtual network should not be visible for the cloud provider
either.

This should not be confused with the privacy offered by
encrypted tunneling protocols like IPSec which can
encrypt not just the data but also the inner headers. The
problem being the Host and the NIC need to know which
are those inner headers for doing the proper forwarding
after the tunnel encapsulation is removed. A proper
solution is only possible if only in the client´s execution
context can those inner headers not just be read but also
used for the matching and action required, and of course,
for configuring the matching rules. There is no doubt this is
really demanding, but there should not be doubt either that
only that way can be the protection and privacy really
offered if this two-level network control management is
really required.

3) Qos applied independently in the two levels.

While the cloud provider hopefully offers certain degree
of QoS per VM/client, how the guaranteed bandwidth is
internally used should be in the hands of the client. CXL
can help facilitating access to related counters and maybe
using a per rule/flow weight which can be easily modified
by the client and by the provider. This does not mean the
provider can modify what the client does, but obviously,
the provider needs to have also a way for doing the QoS at
its level.

How CXL can help here? The Holistic Approach.

Because the configuration can be based on Host CPU
writes to CXL memory, the different levels can have
private mappings to different slices in that memory. There
is no need of code in the Host translating generic
configuration about control path to the specific instrinsics
of a particular hardware device. This could be also possible
without CXL, but the interface which is required for each
level (the client level implying multiple clients) is simpler
with just CPU read/writes to the private CXL memory
slice, and as it was presented earlier, not requiring a special
path through kernel drivers, nor special PCIe management
in the device for the control path changes ending up in the
device DRAM.

It is an holistic approach because with a memory
interface plus real memory in the device, memory
encryption technology can be used for the protection and
privacy required. Technologies like AMD´s SEV-SNP [12],
Intel´s SGX [13] or ARM´s CCA [14] could be leveraged
for such a confidential control path data.

And as with CXL counters are theoretically easily
accessible helping with adjusting QoS configuration, and

7

with such a configuration having the simple interface of
memory accesses in the two levels.

The previous picture shows how this could be
implemented. The different colors for the CPU´s tries to
reflect the different execution contexts where the CXL
memory, specifically those ranges linked to the context,
will be accessed, both for the slow path execution and for
the updates to the rules and flows (the control path).

One context executing OVS and installing rules and
flows under the control of the cloud provider is needed
since the virtual network is created by the cloud provider
and how to connect with other local or remote VMs is
established at that level (how the defined tunnels are given
to the client after this setup is not discussed here but not a
big issue if this solution ends up being a reality). There is
also one remote OpenFlow management system owned and
managed by the cloud provider. There are other contexts,
one per tenant having a VM in the machine, with specific
CXL slices owned by tenants. Writing or reading the CXL
slices is only possible inside the execution context owning
such slice. The Openflow management is visualized with
different systems with each tenant controlling its own one.
With those encryption technologies commented previously,
those CLX slices and the slices in the main host memory
used (for supporting more rules/flows than the hardware
admits) will be encrypted protecting the contents from a
security breach or from an non-trusted provider. Executing
code writing to or reading from CXL memory slices is
feasible, although current kernel-based solutions will
require important changes. As an example, there are epbf
programs nowadays handling packets inside the kernel

implying special contexts (ebpf virtual machines) where
that code is executed, so this specific CXL context could
also be theoretically supported. When should those context
be executed? This is obviously something requiring further
investigation and, undoubtedly, discussions with the Linux
kernel community and related projects like OVS. But,
currently, the slow path is not counted on the client but on
the Host. Should not be fairer to have those contexts
contending with the cpu cycles assigned to the related
client´s VMs?

There will be those arguing the cost of doing this
context-based execution for handling packets will slow
down the performance significantly, but this is only true if
compared with a fast path not requiring such slow path
functionality. Most of the fast path will happen inside the
NIC with the offloaded rules and flows already installed
through the CXL interface, and although as stated
previously in this document, the slow path should be
optimized as much as possible, the trade-off between the
security and privacy and the potential performance
degradation seems to be good enough [15] for the security
side. Moreover, if this solution is considered as the right
one, and there is a demand for it, the performance would
be improved with specific hardware designs by the
different CPUs architectures keen to offer this possibility,
as it has happened in the past.

It is also important to note the privacy offered with the
solution described in this document should cover all the
involved components. The Host, being it the main OS, the
hypervisor or other VMs/clients, should not be able to alter
the control path of a specific VM/client nor to see its
configuration, but the NIC should not break this privacy
either. This is obviously a complex thing to do but not
different to what is being done for preserving the VMs
privacy nowadays and therefore not just feasible but
desirable for the sake of giving the full privacy pack
required in public clouds. This could be implemented
partially or fully. Partially implying encryption is not used
inside the NIC in all the processing, although it is obvious
the right keys will be needed at some point, but the client´s
related data should not be readable from NIC memories or
registers without the client collaboration in special cases
like debugging.

6. Conclusions
There is no doubt CXL is a paradigm change and it will
bring new possibilities only limited by the inventive to
harness it in unexpected ways.

With an CXL Type 1 or 2 SmartNIC, the Linux way
could have these advantages:

1. Data in the slow path with rule and connection
entries shared with the hardware fast path.

2. Population and depopulation by the Host with just
memory operations by the CPUs. Offloads do not
require extra work.

8

3. Counters can be read, and coherency can be
delayed until required.

4. Arguably, CXL-based setup can facilitate Device
resource management and QoS from the Host.

5. Future HW designs based on fully programmable
pipelines, as scriptable P4 points to, or an
equivalent HW eBPF, would suffer same problem
than current solutions regarding population and
depopulation of MATs and hash tables. The rate of
change for the control data will be higher than
conventionally assumed, and a CXL-based design
can only help.

6. An holistic approach with CXL along with
memory encryption technologies can make
possible the full virtualization dream, or at least
being one (giant) step closer.

This proposal is really ambitious and no doubt it
requires the SmartNIC vendors to believe in the prospects,
although maybe it is the cloud providers, knowing better
how could be the impact of such technology, the ones
pushing forward. Being aware of the challenges ahead, we
use the same initial paragraph, this time applied to the
proposal itself:

New technologies can always be disruptive but only if
achieving the expectations once the marketing dust settles
down and the advantages can clearly be seen without the
blurry vision of just-to-prove promises.

7. References
[1] CXL https://www.computeexpresslink.org/download-
the-specification

[2] Linux Traffic Control - Implementation Overview
https://api.semanticscholar.org/CorpusID:60992052

[3] Your Network Datapath Will Be P4 Scripted
https://www.netdevconf.org/0x16/slides/38/P4TC-0x16.pdf

[4] The design and Implementation of Open vSwitch
https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/pfaff

[5] OpenFlow., January2014.
http://www.opennetworking.org/sdn-resources/onf-
specifications/openflow

[6] B. Naudts, M. Kind, F. -J. Westphal, S. Verbrugge, D.
Colle and M. Pickavet, "Techno-economic Analysis of
Software Defined Networking as Architecture for the

Virtualization of a Mobile Network," 2012 European
Workshop on Software Defined Networking, Darmstadt,
Germany, 2012, pp. 67-72, doi: 10.1109/EWSDN.2012.27.

[7]https://netdevconf.info/0x15/slides/16/Flow
%20dissector_PANDA%20parser.pdf

[8] Higuchi and T. Hirotsu, "Design and Implementation of
Virtual Topology Management for Multi-tenant OpenFlow
Hypervisor," 2017 International Conference on
Computational Science and Computational Intelligence
(CSCI), Las Vegas, NV, USA, 2017, pp. 1523-1528, doi:
10.1109/CSCI.2017.266.
https://ieeexplore.ieee.org/document/8561030

[9] M. Erel-Özçevik and B. Canberk, "OFaaS: OpenFlow
Switch as a Service for Multi Tenant Slicing in SD-CDN,"
in IEEE Transactions on Network and Service
Management, vol. 18, no. 1, pp. 362-373, March 2021, doi:
10.1109/TNSM.2020.3045044.
https://ieeexplore.ieee.org/document/9295349

[10] C. Argyropoulos, S. Mastorakis, K. Giotis, G.
Androulidakis, D. Kalogeras and V. Maglaris, "Control-
plane slicing methods in multi-tenant software defined
networks," 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM), Ottawa, ON,
Canada, 2015, pp. 612-618, doi:
10.1109/INM.2015.7140345.
https://ieeexplore.ieee.org/document/7140345

[11] N. Paladi and C. Gehrmann, "Towards Secure Multi-
tenant Virtualized Networks," 2015 IEEE
Trustcom/BigDataSE/ISPA, Helsinki, Finland, 2015, pp.
1180-1185, doi: 10.1109/Trustcom.2015.502.
https://ieeexplore.ieee.org/document/7140345

[12]https://www.amd.com/content/dam/amd/en/
documents/epyc-business-docs/white-papers/SEV-SNP-
strengthening-vm-isolation-with-integrity-protection-and-
more.pdf

[13]https://www.intel.com/content/www/us/en/
architecture-and-technology/software-guard-
extensions.html

[14]https://www.arm.com/architecture/security-features/
arm-confidential-compute-architecture

[15] Performance Analysis of Scientific Computing
Workloads on Trusted Execution Environments. Ayaz
Akram, Anna Giannakou, Venkatesh Akella, Jason Lowe-
Power, Sean Peisert. 2020ArXiv201013216A.
https://arxiv.org/abs/2010.13216

9

https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://arxiv.org/abs/2010.13216
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://ieeexplore.ieee.org/document/7140345
https://ieeexplore.ieee.org/document/7140345
https://ieeexplore.ieee.org/document/9295349
https://ieeexplore.ieee.org/document/8561030
https://netdevconf.info/0x15/slides/16/Flow%20dissector_PANDA%20parser.pdf
https://netdevconf.info/0x15/slides/16/Flow%20dissector_PANDA%20parser.pdf
http://www.opennetworking.org/sdn-resources/onf-specifications/openflow
http://www.opennetworking.org/sdn-resources/onf-specifications/openflow
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.netdevconf.org/0x16/slides/38/P4TC-0x16.pdf
https://api.semanticscholar.org/CorpusID:60992052

	1. Introduction
	2. SmartNICs: MATs and DRAM
	3. TC and conntrack bottlenecks
	4. CXL into the picture
	6. Conclusions
	7. References

