Multi-core IPsec tunnels

Daniel Xu, Vlad Dumitrescu, Antony Antony

Additional credits

vvyyvyy

vy

Kernel work ~3-4 years ago @Netdev 0x13 in Prague.
Many thanks to Steffen Klassert for xfrm patches
Tobias Brunner : strongSwan support

Paul Wouters : IETF standardization, and testing using
libreswan

Sowmini Varadhan : initial use case

Benedict Wong and Tuomo Soini : hacking and testing
Jonathan Lemon : ENA driver XDP multi-buffer support

Background

» |Psec tunnels have well known scalability limitations
» Crypto state, counters, and sequence numbers cannot be
efficiently shared across cores

» Link speeds vastly outpacing single tunnel performance
improvements
> Would like to take advantage of modern multi-core systems

Typical topology

o + S +
| Private Subnet 1 | | Private Subnet 2 |
fommm Fommm + fommm fommm— +
| |
| |
| |
fommm Y S + oo Ym——m———— +
| Gateway 1 I | Gateway 2 |
fommm fommm + P fom +
| |
| |
| |
S + A +

IPSec Tunnel
+-—-Internet—-——+

Aviatrix topology

P—— Connected
a L Transit

(AWS or Aviatrix Peering) |

AVX Gateway

Spoke Spoke Spoke Spoke Spoke
e vec1 @ vPc2 VPC3 @ VPC 98 @ VPC |

Transport Domain

Direct Connect/ Internet

e e
On Prem 1 OnPrem2

pCPU IPsec tunnel design

» Negotiate a pair of SAs for each CPU
» On demand and sender driven
» On TX, the pCPU SA is chosen based on current CPU

» On RX, expect a given pCPU SPI to always land on same CPU
» Hardware RSS or software RSS (XDP_REDIRECT)

» If RX and TX constraints are met: lockless operation and linear
scaling

End to end sequence
dxuuu.xyz/r/ipsec-pcpu.png

Experimental setup

IPsec Gateway Packet Generator source and sink
@ Debian host: 3 NICs etho, ethl, eth? Debian 2 NICs eth0 and eth2
Software with pCPU support Traffic generator neper (tcp_stream)

Linux kernel : xfrm-pcpu-v3,
ena driver, xdp-tools, strongSwan,

iproute2
IPsec GW 1 west IPsec GW 2 east
192.1.10.254/24 192.1.20.254/24
sunset sunrise
pkt gen 1 pkt gen 2
192.1.10.252/24 192.1.2.45/24 192.1.. 192.1.20.252/24

* Each host has eth2, NIC for admin, ssh access
Test network for xfrm pCPU testing

Experimental setup details

» All hosts are EC2 c6in.16xlarge
» 32 physical cores (hyperthreading disabled)
» 100 Gbps instance bandwidth
» 10 Gbps single flow limit
> 16 combined rx/tx queues

» xfrm pcpu patches applied to 6.5.6 Debian sid kernel
» ENA patches applied to prevent XDP queue halving and for
jumbo frames
» GRO disabled on all dataplane interfaces (more on this later)
» XDP_REDIRECT used for steering
» SPI for rx
> sport/dport for plaintext tx
» neper (tcp_stream) used for traffic

» UDP encap used to overcome single flow limit
> AWS does not differentiate ESP flows based on SPI :(

Results (1/3)

60

a
3

S
3

Average (Gbps)

w
s

Average Throughput vs. Number of Flows (1380 MTU)

—— Number of CPUs
Plaintext TCP

-~ single tunnel TCP
—e— Percpu tunnel TCP

Flows

Results (2/3)

Average (Gbps)

100

60

Average Throughput vs. Number of Flows (3300 MTU)

—— Number of CPUs

~== Plaintext TCP

-~ Single tunnel TCP

—e— Percpu tunnel TCP !

Flows

Results (3/3)

Average Throughput vs. Number of Flows (9001 MTU)

100 { — Number of CPUs
~-- Plaintext TCP
-~ Single tunnel TCP
—e— Percpu tunnel TCP /
80
z
2 60
e
v
&
14
g
<
40
20

Flows

Near-term improvements

» XDP cpumap GRO support
» To help batch up plaintext flows to hand to xfrm
> Big expected win here
» Patches already exist!
» xfrm pcpu tx contention
» Unexpected appearanes in cpu profile:
> xfrm_resolve_and_create_bundle()
» xfrm_state_find()

It takes a village

Changes in:

| 2

>
>
>
>
>
>

kernel xfrm

kernel bpf

Amazon ENA driver
strongSwan
xdp-tools

iproute2

IETF

