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Kernel work ~3-4 years ago @Netdev 0x13 in Prague.
Many thanks to Steffen Klassert for xfrm patches
Tobias Brunner : strongSwan support

Paul Wouters : IETF standardization, and testing using
libreswan

Sowmini Varadhan : initial use case

Benedict Wong and Tuomo Soini : hacking and testing
Jonathan Lemon : ENA driver XDP multi-buffer support



Background

» |Psec tunnels have well known scalability limitations
» Crypto state, counters, and sequence numbers cannot be
efficiently shared across cores

» Link speeds vastly outpacing single tunnel performance
improvements
> Would like to take advantage of modern multi-core systems
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Aviatrix topology
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pCPU IPsec tunnel design

» Negotiate a pair of SAs for each CPU
» On demand and sender driven
» On TX, the pCPU SA is chosen based on current CPU

» On RX, expect a given pCPU SPI to always land on same CPU
» Hardware RSS or software RSS (XDP_REDIRECT)

» If RX and TX constraints are met: lockless operation and linear
scaling



End to end sequence
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Experimental setup

IPsec Gateway Packet Generator source and sink
@ Debian host: 3 NICs etho, ethl, eth? Debian 2 NICs eth0 and eth2
Software with pCPU support Traffic generator neper (tcp_stream)

Linux kernel : xfrm-pcpu-v3,
ena driver, xdp-tools, strongSwan,

iproute2
IPsec GW 1 west IPsec GW 2 east
192.1.10.254/24 192.1.20.254/24
sunset sunrise
pkt gen 1 pkt gen 2
192.1.10.252/24 192.1.2.45/24 192.1.. 192.1.20.252/24

* Each host has eth2, NIC for admin, ssh access
Test network for xfrm pCPU testing




Experimental setup details

» All hosts are EC2 c6in.16xlarge
» 32 physical cores (hyperthreading disabled)
» 100 Gbps instance bandwidth
» 10 Gbps single flow limit
> 16 combined rx/tx queues

» xfrm pcpu patches applied to 6.5.6 Debian sid kernel
» ENA patches applied to prevent XDP queue halving and for
jumbo frames
» GRO disabled on all dataplane interfaces (more on this later)
» XDP_REDIRECT used for steering
» SPI for rx
> sport/dport for plaintext tx
» neper (tcp_stream) used for traffic

» UDP encap used to overcome single flow limit
> AWS does not differentiate ESP flows based on SPI :(



Results (1/3)
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Results (2/3)
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Results (3/3)
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Near-term improvements

» XDP cpumap GRO support
» To help batch up plaintext flows to hand to xfrm
> Big expected win here
» Patches already exist!
» xfrm pcpu tx contention
» Unexpected appearanes in cpu profile:
> xfrm_resolve_and_create_bundle()
» xfrm_state_find()



It takes a village
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