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Emergence of Host Congestion

Recent technology trends: host congestion 
E.g., recent studies from Google, Microsoft, Alibaba, etc. 

Conventional wisdom: congestion happens in the network core 
At switches



Host congestion in Google production cluster
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We reproduced host congestion phenomenon 
using an open sourced stack: Linux + DCTCP

Source: Understanding Host Interconnect Congestion, HotNets 2022

Host Congestion: Impact on Application Performance

Topology: single sender, single receiver, 100Gbps access links 
• No network fabric congestion

Workload: Multi-tenant scenario 
• iperf: Throughput-intensive network app 
• netperf: Latency-sensitive network app 
• MLC: Memory-intensive host-local app

Sender Receiver



Host congestion in Google production cluster
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We reproduced host congestion phenomenon 
using an open sourced stack: Linux + DCTCP

Source: Understanding Host Interconnect Congestion, HotNets 2022

Host Congestion: Impact on Application Performance

Our GitHub repo provides workloads and infrastructure required to reproduce our results:
https://www.github.com/Terabit-Ethernet/hostCC
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Experiment 1 
[Baseline scenario] 

Up to 55% reduction in 
throughput

Experiment 3 
[Multi-tenant scenario] 

Up to 5000x inflation in 
tail latency

Experiment 2 
[Larger #connections] 

Up to 1.1% packet drops 
=> poor isolation

Paper provides workload details and additional results

https://www.github.com/Terabit-Ethernet/hostCC


Host Congestion: congestion within the host interconnect 
Bottlenecks within the NIC-to-CPU/memory datapath

Result: Queueing and drops at the NIC

Host interconnect: a different kind of network fabric 
- hardware guarantees losslessness (no data drops) 
- is shared by network applications and “host-local” applications

NIC

PCIe

IIO
DRAM

Understanding Host Congestion

Processor Interconnect Memory Interconnect

Peripheral Interconnect

Host interconnect comprises of three main components 
- processor, peripheral and memory interconnect 
- help exchange information across NIC, CPUs and DRAM

Network traffic

Host-local traffic



Host Congestion: congestion within the host interconnect 
Bottlenecks within the NIC-to-CPU/memory datapath

Result: Queueing and drops at the NIC

Host interconnect: a different kind of network fabric 
- hardware guarantees losslessness (no data drops) 
- is shared by network applications and “host-local” applications
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Understanding Host Congestion

Host interconnect comprises of three main components 
- processor, peripheral and memory interconnect 
- exchange information across NIC, CPUs and DRAMProblem likely to get even worse over time
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Rethinking congestion signals 
Congestion happening “outside” the network

Sender Receiver

Memory controller outside the 
considered view of network

Host Congestion Control: Rethinking CC Architecture

Memory controller outside the 
considered view of network

Traditional congestion signals: 
switch buffer occupancies, delays or packet drops



Sender Receiver

Congestion Control 
(RTT granularity)

Rethinking congestion response 

Congestion Signal 
(Delay/Drops)

- CC performed at RTT granularity
- Host-local traffic does not employ CC

Host Congestion Control: Rethinking CC Architecture

Host-local traffic does not 
employ congestion control

Host-local traffic does not 
employ congestion control



Key idea: Host-local congestion response, at sub-RTT granularity 

Sender Receiver

Host-local  
Congestion Response 
(at sub-RTT granularity)

hostCC: A new CC Architecture for Host and Network Congestion

Host-local  
Congestion Response 
(at sub-RTT granularity)

Prevents network traffic 
getting starved

Minimizes queueing and 
drops at the NIC



hostCC: End-to-end Overview
1. Host Congestion Signals 
At sub-µs granularity 
Using commodity hardware

Sender Receiver

Host 
Congestion 

Signals

Host 
Congestion 

Signals

hostCC currently uses  
IIO buffer occupancy  

as host congestion signal

hostCC currently uses  
IIO buffer occupancy  

as host congestion signal



hostCC: End-to-end Overview
1. Host Congestion Signals 
At sub-µs granularity 
Using commodity hardware

Sender Receiver

Host 
Congestion 

Signals

Host 
Congestion 

Signals

CDF for IIO Occupancy Measurement Latency

Measurement latency <~600ns, 
Independent of host congestion

IIO Occupancy Behavior

IIO occupancy ~65 cachelines under 
no host congestion scenario

IIO occupancy saturates to max 
value of ~92 cachelines

No Host Congestion With Host Congestion

µs-scale Behavior of IIO Occupancy



hostCC: End-to-end Overview
1. Host Congestion Signals 
At sub-µs granularity 
Using commodity hardware

Sender Receiver

Host 
Congestion 

Signals

Host 
Congestion 

Signals

2. Host-local Congestion Response 
At sub-RTT granularity 
No changes to applications/hardware 

Host-local  
Congestion Response 
(at sub-RTT granularity)

Host-local  
Congestion Response 
(at sub-RTT granularity)

hostCC currently uses  
backpressure-based mechanisms 
for host-local congestion response

hostCC currently uses  
backpressure-based mechanisms 
for host-local congestion response



hostCC: End-to-end Overview
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2. Host-local Congestion Response 
At sub-RTT granularity 
No changes to applications/hardware 

Host-local  
Congestion Response 
(at sub-RTT granularity)

Host-local  
Congestion Response 
(at sub-RTT granularity)

hostCC uses  
Memory Bandwidth Allocation 

for host-local congestion response

hostCC uses  
Memory Bandwidth Allocation 

for host-local congestion response

Example tool for backpressure to host-local traffic: Intel MBA
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Per-core Memory Bandwidth Allocation

Increasing backpressure for increasing allocation levels



hostCC: End-to-end Overview
1. Host Congestion Signals 
At sub-µs granularity 
Using commodity hardware
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2. Host-local Congestion Response 
At sub-RTT granularity 
No changes to applications/hardware 

Host-local  
Congestion Response 
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Host-local  
Congestion Response 
(at sub-RTT granularity)

hostCC currently uses  
backpressure-based mechanisms 
for host-local congestion response

hostCC currently uses  
backpressure-based mechanisms 
for host-local congestion response

User-specified host resource 
allocation policy

User-specified host resource 
allocation policy

Target Network BW Target Network BW

Desired Allocation Level Desired Allocation Level



hostCC: End-to-end Overview
1. Host Congestion Signals 
At sub-µs granularity 
Using commodity hardware
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2. Host-local Congestion Response 
At sub-RTT granularity 
No changes to applications/hardware 

3. Network Congestion Response 
Uses both network & host congestion signals 
No changes to network CC protocols

Network 
Congestion 

Signals

Network Congestion Response 
(at RTT granularity)

Sending rate computed using 
minimum bottleneck capacity in 

network & host interconnect

Sending rate computed using 
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network & host interconnect

Sending rate computed using 
minimum bottleneck capacity in 
network and host interconnect

Host-local  
Congestion Response 
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hostCC: End-to-end Overview
1. Host Congestion Signals 
At sub-µs granularity 
Using commodity hardware

Sender Receiver

2. Host-local Congestion Response 
At sub-RTT granularity 
No changes to applications/hardware 

3. Network Congestion Response 
Uses both network & host congestion signals 
No changes to network CC protocols

Example scenario: Using ECN-based network CC protocols

Minimal modifications to the 
host IP layer stack  

(<100 LOC using NetFilter hooks)

Packet

PAYLOADHDRECN bits marked in 
packet’s IP header

When switch buffer 
occupancy exceeds 

ECN threshold

When switch IIO buffer 
occupancy exceeds ECN 

threshold

ECN bits echoed 
back to sender via 
ACKs by transport

CC protocols react to ECNs 
independent of the  
source of marking

No changes required for 
existing ECN-based protocols 

(DCTCP, TCP w/ ECN, etc)



hostCC Benefits With Host Congestion
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Improved performance under host congestion
Near-optimal throughput and latency
Reduces queueing/drops to a bare minimum

Enables enforcing desired resource allocation policy
Network traffic close to user-specified target bandwidth
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hostCC Benefits With Host Congestion and Network Fabric Congestion

Maintains benefits even in presence of both 
network and host congestion
Interpolates well with network CC

0
20
40
60
80

100

1x 1.5x 2x 2.5x

Throughput (Gbps)

Degree of incast

Performance similar to network CC in presence of 
only network congestion
Minimal overheads of using hostCC
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Network Traffic 
Resources

Host-local 
Traffic 

Resources

Coarse-grained 
allocation

Finer-grained 
allocation

CXL will reduce  
peripheral interconnect latency  

(i.e., NIC-to-IIO latency) 

However, host congestion 
caused by increase in  
IIO-to-DRAM latency 

RDMA avoids data copy 
overheads 

Even with zero-copy, RDMA 
still utilizes DRAM bandwidth 

to DMA data to DRAM 

We need new tools for efficient resource allocation
Existing tools too coarse grained
Need tools for finer-grained allocation

New technologies for solving host congestion
Unclear if CXL will solve the problem
RDMA may not solve the problem by itself 

Lessons learnt and future directions



hostCC: A CC architecture that handles host and network fabric congestion

Sender Receiver

Host 
Congestion 

Signals

Host 
Congestion 

Signals

Host-local  
Congestion Response 
(at sub-RTT granularity)

Host-local  
Congestion Response 
(at sub-RTT granularity)

Network 
Congestion 

Signals

Network Congestion Response 
(at RTT granularity)

hostCC Linux implementation & workloads to reproduce our results are available at www.github.com/Terabit-Ethernet/hostCC
hostCC project webpage: www.cs.cornell.edu/~saksham/hostcc

http://www.github.com/Terabit-Ethernet/hostCC
http://www.cs.cornell.edu/~saksham/hostcc

