
Host Congestion Control

Saksham Agarwal
Cornell University

Arvind Krishnamurthy
Google &

University of Washington

Rachit Agarwal
Cornell University

Emergence of Host Congestion

Recent technology trends: host congestion
E.g., recent studies from Google, Microsoft, Alibaba, etc.

Conventional wisdom: congestion happens in the network core
At switches

Host congestion in Google production cluster

0.2 0.4 0.6 0.8
Host Access Link Bandwidth Utilization

H
os

t
D

ro
p

R
at

e

N
or

m
al

iz
ed

Fr
ac

ti
on

(A

m
on

g
al

l d
at

a
po

in
ts

 o
n

pl
ot

)

0.0 1.0
0

1

We reproduced host congestion phenomenon
using an open sourced stack: Linux + DCTCP

Source: Understanding Host Interconnect Congestion, HotNets 2022

Host Congestion: Impact on Application Performance

Topology: single sender, single receiver, 100Gbps access links
• No network fabric congestion

Workload: Multi-tenant scenario
• iperf: Throughput-intensive network app
• netperf: Latency-sensitive network app
• MLC: Memory-intensive host-local app

Sender Receiver

Host congestion in Google production cluster

0.2 0.4 0.6 0.8
Host Access Link Bandwidth Utilization

H
os

t
D

ro
p

R
at

e

N
or

m
al

iz
ed

Fr
ac

ti
on

(A

m
on

g
al

l d
at

a
po

in
ts

 o
n

pl
ot

)

0.0 1.0
0

1

We reproduced host congestion phenomenon
using an open sourced stack: Linux + DCTCP

Source: Understanding Host Interconnect Congestion, HotNets 2022

Host Congestion: Impact on Application Performance

Our GitHub repo provides workloads and infrastructure required to reproduce our results:
https://www.github.com/Terabit-Ethernet/hostCC

0

25

50

75

100

No Congestion With Host Congestion

1

1000

1000000

0

1

2
Throughput (Gbps) Tail Latency (us)Packet Drop %

Experiment 1
[Baseline scenario]

Up to 55% reduction in
throughput

Experiment 3
[Multi-tenant scenario]

Up to 5000x inflation in
tail latency

Experiment 2
[Larger #connections]

Up to 1.1% packet drops
=> poor isolation

Paper provides workload details and additional results

https://www.github.com/Terabit-Ethernet/hostCC

Host Congestion: congestion within the host interconnect
Bottlenecks within the NIC-to-CPU/memory datapath

Result: Queueing and drops at the NIC

Host interconnect: a different kind of network fabric
- hardware guarantees losslessness (no data drops)
- is shared by network applications and “host-local” applications

NIC

PCIe

IIO
DRAM

Understanding Host Congestion

Processor Interconnect Memory Interconnect

Peripheral Interconnect

Host interconnect comprises of three main components
- processor, peripheral and memory interconnect
- help exchange information across NIC, CPUs and DRAM

Network traffic

Host-local traffic

Host Congestion: congestion within the host interconnect
Bottlenecks within the NIC-to-CPU/memory datapath

Result: Queueing and drops at the NIC

Host interconnect: a different kind of network fabric
- hardware guarantees losslessness (no data drops)
- is shared by network applications and “host-local” applications

NIC

PCIe

IIO
DRAM

Understanding Host Congestion

Host interconnect comprises of three main components
- processor, peripheral and memory interconnect
- exchange information across NIC, CPUs and DRAMProblem likely to get even worse over time

1
2
3
4
5
6

2017 2019 2021 2023 2024 2025 2026

Peripheral device traffic Host-local traffic

Memory Bandwidth Oversubscription

Sapphire
Rapids

Emerald
Rapids

Granite
Rapids

Diamond
RapidsIcelakeCascadelakeSkylake

Years

Rethinking congestion signals
Congestion happening “outside” the network

Sender Receiver

Memory controller outside the
considered view of network

Host Congestion Control: Rethinking CC Architecture

Memory controller outside the
considered view of network

Traditional congestion signals:
switch buffer occupancies, delays or packet drops

Sender Receiver

Congestion Control
(RTT granularity)

Rethinking congestion response

Congestion Signal
(Delay/Drops)

- CC performed at RTT granularity
- Host-local traffic does not employ CC

Host Congestion Control: Rethinking CC Architecture

Host-local traffic does not
employ congestion control

Host-local traffic does not
employ congestion control

Key idea: Host-local congestion response, at sub-RTT granularity

Sender Receiver

Host-local
Congestion Response
(at sub-RTT granularity)

hostCC: A new CC Architecture for Host and Network Congestion

Host-local
Congestion Response
(at sub-RTT granularity)

Prevents network traffic
getting starved

Minimizes queueing and
drops at the NIC

hostCC: End-to-end Overview
1. Host Congestion Signals
At sub-µs granularity
Using commodity hardware

Sender Receiver

Host
Congestion

Signals

Host
Congestion

Signals

hostCC currently uses
IIO buffer occupancy

as host congestion signal

hostCC currently uses
IIO buffer occupancy

as host congestion signal

hostCC: End-to-end Overview
1. Host Congestion Signals
At sub-µs granularity
Using commodity hardware

Sender Receiver

Host
Congestion

Signals

Host
Congestion

Signals

CDF for IIO Occupancy Measurement Latency

Measurement latency <~600ns,
Independent of host congestion

IIO Occupancy Behavior

IIO occupancy ~65 cachelines under
no host congestion scenario

IIO occupancy saturates to max
value of ~92 cachelines

No Host Congestion With Host Congestion

µs-scale Behavior of IIO Occupancy

hostCC: End-to-end Overview
1. Host Congestion Signals
At sub-µs granularity
Using commodity hardware

Sender Receiver

Host
Congestion

Signals

Host
Congestion

Signals

2. Host-local Congestion Response
At sub-RTT granularity
No changes to applications/hardware

Host-local
Congestion Response
(at sub-RTT granularity)

Host-local
Congestion Response
(at sub-RTT granularity)

hostCC currently uses
backpressure-based mechanisms
for host-local congestion response

hostCC currently uses
backpressure-based mechanisms
for host-local congestion response

hostCC: End-to-end Overview
1. Host Congestion Signals
At sub-µs granularity
Using commodity hardware

Sender Receiver

Host
Congestion

Signals

Host
Congestion

Signals

2. Host-local Congestion Response
At sub-RTT granularity
No changes to applications/hardware

Host-local
Congestion Response
(at sub-RTT granularity)

Host-local
Congestion Response
(at sub-RTT granularity)

hostCC uses
Memory Bandwidth Allocation

for host-local congestion response

hostCC uses
Memory Bandwidth Allocation

for host-local congestion response

Example tool for backpressure to host-local traffic: Intel MBA
Al

lo
ca

te
d

M
em

or
y

Ba
nd

w
id

th
 (%

)

20
40
60
80

100

Allocation levels
0 1 2 3 4 5 6 7 8 9

Per-core Memory Bandwidth Allocation

Increasing backpressure for increasing allocation levels

hostCC: End-to-end Overview
1. Host Congestion Signals
At sub-µs granularity
Using commodity hardware

Sender Receiver

Host
Congestion

Signals

Host
Congestion

Signals

2. Host-local Congestion Response
At sub-RTT granularity
No changes to applications/hardware

Host-local
Congestion Response
(at sub-RTT granularity)

Host-local
Congestion Response
(at sub-RTT granularity)

hostCC currently uses
backpressure-based mechanisms
for host-local congestion response

hostCC currently uses
backpressure-based mechanisms
for host-local congestion response

User-specified host resource
allocation policy

User-specified host resource
allocation policy

Target Network BW Target Network BW

Desired Allocation Level Desired Allocation Level

hostCC: End-to-end Overview
1. Host Congestion Signals
At sub-µs granularity
Using commodity hardware

Sender Receiver

Host
Congestion

Signals

Host
Congestion

Signals

2. Host-local Congestion Response
At sub-RTT granularity
No changes to applications/hardware

3. Network Congestion Response
Uses both network & host congestion signals
No changes to network CC protocols

Network
Congestion

Signals

Network Congestion Response
(at RTT granularity)

Sending rate computed using
minimum bottleneck capacity in

network & host interconnect

Sending rate computed using
minimum bottleneck capacity in

network & host interconnect

Sending rate computed using
minimum bottleneck capacity in
network and host interconnect

Host-local
Congestion Response
(at sub-RTT granularity)

Host-local
Congestion Response
(at sub-RTT granularity)

hostCC: End-to-end Overview
1. Host Congestion Signals
At sub-µs granularity
Using commodity hardware

Sender Receiver

2. Host-local Congestion Response
At sub-RTT granularity
No changes to applications/hardware

3. Network Congestion Response
Uses both network & host congestion signals
No changes to network CC protocols

Example scenario: Using ECN-based network CC protocols

Minimal modifications to the
host IP layer stack

(<100 LOC using NetFilter hooks)

Packet

PAYLOADHDRECN bits marked in
packet’s IP header

When switch buffer
occupancy exceeds

ECN threshold

When switch IIO buffer
occupancy exceeds ECN

threshold

ECN bits echoed
back to sender via
ACKs by transport

CC protocols react to ECNs
independent of the
source of marking

No changes required for
existing ECN-based protocols

(DCTCP, TCP w/ ECN, etc)

hostCC Benefits With Host Congestion

0
20
40
60
80

100

DCTCP DCTCP with hostCC

1

1000

1000000
Throughput (Gbps) Tail Latency (us)

Improved performance under host congestion
Near-optimal throughput and latency
Reduces queueing/drops to a bare minimum

Enables enforcing desired resource allocation policy
Network traffic close to user-specified target bandwidth

0
20
40
60
80

100

10 20 30 40 50 60 70 80 90 100

Throughput (Gbps)

Target network bandwidth (Gbps)

hostCC Benefits With Host Congestion and Network Fabric Congestion

Maintains benefits even in presence of both
network and host congestion
Interpolates well with network CC

0
20
40
60
80

100

1x 1.5x 2x 2.5x

Throughput (Gbps)

Degree of incast

Performance similar to network CC in presence of
only network congestion
Minimal overheads of using hostCC

0
20
40
60
80

100

1x 1.5x 2x 2.5x

Throughput (Gbps)

Degree of incast

Network Traffic
Resources

Host-local
Traffic

Resources

Coarse-grained
allocation

Finer-grained
allocation

CXL will reduce
peripheral interconnect latency

(i.e., NIC-to-IIO latency)

However, host congestion
caused by increase in
IIO-to-DRAM latency

RDMA avoids data copy
overheads

Even with zero-copy, RDMA
still utilizes DRAM bandwidth

to DMA data to DRAM

We need new tools for efficient resource allocation
Existing tools too coarse grained
Need tools for finer-grained allocation

New technologies for solving host congestion
Unclear if CXL will solve the problem
RDMA may not solve the problem by itself

Lessons learnt and future directions

hostCC: A CC architecture that handles host and network fabric congestion

Sender Receiver

Host
Congestion

Signals

Host
Congestion

Signals

Host-local
Congestion Response
(at sub-RTT granularity)

Host-local
Congestion Response
(at sub-RTT granularity)

Network
Congestion

Signals

Network Congestion Response
(at RTT granularity)

hostCC Linux implementation & workloads to reproduce our results are available at www.github.com/Terabit-Ethernet/hostCC
hostCC project webpage: www.cs.cornell.edu/~saksham/hostcc

http://www.github.com/Terabit-Ethernet/hostCC
http://www.cs.cornell.edu/~saksham/hostcc

