
Maryam Ataei

Mark Claypool

Jae Chung

Feng Li

Benjamin Peters

Implementation of the SEARCH Slow Start
Algorithm in the Linux Kernel

NetDev 0x18

San Clara, CA, July 2024

Joshua Chung

1

2

Outline

• Motivation and Problem Statement

• SEARCH Algorithm

• SEARCH Parameter Analysis

• Performance Evaluation

• Conclusion and Future work

3

Why Slow Start Important?

Case Study: TCP CUBIC on Broadband GEO Satellite (Capacity: 144Mbps, Duplex Propagation Latency = 600ms)

Slow Start Recovery Congestion Avoidance

Time Sequence Graph of a TCP CUBIC w/o HyStart at the sender (bulk transfer)

Acks (in sequence)

Receive
window

Duplicated Acks

Transmitted
Segments

TCP Overview

4

• Large RTT variations confused TCP CUBIC HyStart (Linux Default) and caused early slow start exit

• The early exit resulted in bandwidth underutilization and impacted object delivery time

Case Study: TCP CUBIC on Broadband GEO Satellite (Capacity: 144Mbps, Base-RTT = 600ms)

Why Slow Start Important ?

Maryam Ataei Kachooei, Pinhan Zhao, Feng Li, Jae Won

Chung, and Mark Claypool. Fixing TCP Slow Start for Slow

Fat Links, In Proceedings of the 0x16 NetDev Conference,

Lisbon, Portugal, October 2022

http://www.cs.wpi.edu/~claypool/papers/tcp-best-netdev-22/
http://www.cs.wpi.edu/~claypool/papers/tcp-best-netdev-22/

Enhance TCP slow start
to avoid premature exits
and bound the exit delay

to avoid buffer bloat

Mission Statement

6

Outline

• Motivation and Problem Statement

• SEARCH Algorithm

• SEARCH Parameter Analysis

• Performance Evaluation

• Conclusion and Future work

7

t1 t2 t3 t4 t5

capacity

d
el

iv
er

ed
 b

yt
es

Time

a

2a

4a

t1 t2 t3 t4

capacity

se
n

t
b

yt
es

Time

a

2a

4a

8a

Slow start Exit At Right CHokepoint (SEARCH)

8

t1 t2 t3 t4 t5

capacity

d
el

iv
er

ed
 b

yt
es

Time

a

2a

4a

t1 t2 t3 t4

capacity

se
n

t
b

yt
es

Time

a

2a

4a

8a 8a

diff = estimated sent – curr delv

normalized diff = diff / estimated sent

if (normalized diff ≥ predefined threshold):

 exit safely from slow start

estimated sent = 2 × prev delv

Slow start Exit At Right CHokepoint (SEARCH)

cwnd

Time

cwnd

Time

9

SEARCH Behavior

Drop Drop

TCP Default TCP with SEARCH

Capacity
Norm >= Threshold

RTT

• Variation of RTTs

window

Bin

• Limited memory on server

BinBin

• RTT increase may not be caused by congestion
on forward link.

• Attributable to uplink acknowledgments on
backward link.

• Memory allocated per flow

• Unable to store history for each received
ACK

10

Challenges

11

SEARCH Algorithm 2.0

• Window size
• Number of Bins
• Threshold

12

Window Size – Parameter Selection (I)

• Windows Size Selection Consideration

• Large enough to encapsulate meaningful link variation

• Small enough to respond quickly when reaching link capacity

• Select window size with FFT

• Convert measured RTT from Time domain to frequency domain

• Choosing 3.5 as default, which is a balanced results for

• GEO (3.33), LEO (3.33), WiFi (3.75) and LTE (2.8)

13

Number of Bins – Parameter Selection (II)

• Bins are introduced to reduce computational and memory load.

• Impractical to track every ACK.

• More bins provide more fidelity to actual delivered bytes total,

reduce SEARCH convergence time. But more memory

consumption.

• Through numbers cases analysis [KCC24], we choose 10 bins which

• Nearly identical performance as with more bins

• Minimize ”early exits” when closing to the maximum link capacity.

14

Threshold – Parameter Selection (III)

• Exit threshold demines when the difference between current

delivered bytes and delivered bytes during previous RTT is large

enough to exit from slow start.

• Based on analysis [KCC24], normalized difference would in range [0,

0.5).

• Choose 0.35 as default value after tons of evaluation and analysis.

• Detect congestion point in less 2 RTTs.

15

Outline

• Motivation and Problem Statement

• SEARCH Algorithm

• SEARCH Parameter Analysis

• Performance Evaluation

• Evaluation w/ GEO by example

• Evaluation w/ Wifi

• Conclusion and Future work

16

GEO TestBed

• AWS Server EC2 Instance w/ 32 GB
RAM, Ubuntu 22.04 w/ 5.13.12
customized kernel for SEARCH
support.

• CPE (Client) PC w/ 32GB RAM, Intel i7
– 5820 CPU, w/ Ubuntu 20.04 w/
5.4.0 kernel.

• ISP Gateway supports up to 36MB
buffer per flow with AQM capability.

• PEP are bypassed in this study.

17

GEO Case Study by Examples

CUBIC w/ Hystart

CUBIC w/o Hystart

CUBIC w/ SEARCH

18

GEO Case Study by Examples

Threshold

19

Wifi TestBed

• Wired server connected to campus network
• Intel i5-8500 CPU, 8GB RAM, mint 20.3 Linux

kernel 5.10.79 w/ SEARCH module.
• Client laptop Intel Core Ultra 7 CPU, w/ 16GB

RAM, ubuntu 22.04 w/ 6.8.0 kernel.
• Each iteration has a 3 second long iperf3 session

with four CCA configurations:
• CUBIC w/HyStart, CUBIC w/o HyStart ,

BBRv1, and SEARCH
• Repeat 200 times in 24 hours.

20

WIFI Throughput and RSSI

* Throughput measured w/ Default TCP settings

• General strong correlation between higher RSSI
and higher throughput.

• Other factors may cause inconsistence such as
shared nature of campus APs.

• Two red dots are manually examined locations.

• Median throughput CDFs at strong and weak
locations

• Median throughput at strong location is higher
than weak locations.

21

Time to Download

Strong
Weak

* Horizontal lines indicates the slow start exit time for each CCAs matching their respective color

22

Slow Start Exit Time

Strong Weak

23

Retransmission

Strong Weak

Evaluation

24

Working in Progress

• Project Page https://search-ss.wpi.edu
• Linux Kernel Module Implementations

• 5.13.x series kernel
• https://github.com/Project-Faster/tcp_ss_search.git (main branch)

• 6.10rc2 based (net-next-6.10rc2 branch)
• https://github.com/Project-Faster/tcp_ss_search/tree/net-next-6.10rc2

• QUIC implementation H2O/Quicly
• https://github.com/Project-Faster/quicly/tree/generic-slowstart (generic-

slowstart branch)
• IETF 120 CCWG Draft0

• https://datatracker.ietf.org/doc/draft-chung-ccwg-search/
• July 24, 2024, IETF 120 CCWG group meeting.
• Looking for comments on algorithm/design/implementation.

https://search.wpi.edu/
https://github.com/Project-Faster/tcp_ss_search.git
https://github.com/Project-Faster/tcp_ss_search/tree/net-next-6.10rc2
https://github.com/Project-Faster/quicly/tree/generic-slowstart
https://datatracker.ietf.org/doc/draft-chung-ccwg-search/

TCP Overview

• Future iteration of the SEARCH algorithm will focus on

• Refining slow start exit strategy to precisely match congestion condition.

• Upstream TCP SEARCH into Linux mainstream and integrate it into

open source QUIC.

• https://github.com/Project-Faster/tcp_ss_search.git

• More evaluations with search

• Over other link type (LTE, LEO, 5G/mmWave, Data Center, etc)

• Varied network condition.

• Incorporate with BBR’s probing phase

25

Future works

https://github.com/Project-Faster/tcp_ss_search.git

TCP Overview

• HyStart does not work in wireless environments (GEO, LTE, WIFI)

and causes premature slow start exits.

• Need a fix in near future

• SEARCH achieves its design goals

• Effectively exits Slow Start after reach maximum capacity,

• Minimizing packet loss and improving network efficiency.

• Reach comparable maximum throughput as TCP w/o Hystart

with fewer retransmissions.

26

Conclusions

TCP Overview

• [KCC24] Kachooei, M. A.; Chung, J.; Cronin, A.; Chung, J.; Li, F.; Peters, B.; and Claypool, M. 2024.
Improving TCP Slow Start Performance in Wireless Networks with SEARCH. In Proceedings of the IEEE
World of Wireless, Mobile and Multimedia Networks (WoWMoM).

• [KCL23] Kachooei, M. A.; Chung, J.; Li, F.; Peters, B.; and Claypool, M. 2023. SEARCH: Robust TCP
Slow Start Performance over Satellite Networks. In Proceedings of the IEEE 48th Conference on
Local Computer Networks (LCN), 1–4.

• [RFC9406] Huang, Y., and Olson, M. a. 2023. HyStart++: Modified Slow Start for TCP. RFC 9406,
RFC Editor.

27

References

Thank you for your
attention!

28

TCP Overview

29

Static Memory Footprint Analysis

Structure Size

struct sock 736 bytes

struct tcp_sock 2192 bytes

* Based on 5.10.79 kernel

Module Size (bytes) Overhead (%) Additional Details

CUBIC 72
2.5

60 bytes + ack_sample struct: 12 bytes

HyStart 18 Part of CUBIC's 72 bytes

SEARCH2.0 121 4.1 Exclude shared cubic fields

BBR (v1.0) 156 5.3 100 bytes + rate_sample struct: 56 bytes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

