
A New Lightweight Zero Copy Notification Mechanism in Linux

Zijian Zhang, Xiaochun Lu
ByteDance, San Jose, CA, USA

{zijianzhang, xiaochun.lu}@bytedance.com

Abstract
The flag MSG ZEROCOPY extends zero copy to common
socket sendmsg system calls, which is more efficient and flex-
ible. However, copy avoidance is not a free lunch. It replaces
the overhead of copy with page management and completion
notifications. The reception of notifications incurs extra sys-
tem call overhead from poll and recvmsg. Assume that ap-
plications which use MSG ZEROCOPY are sensitive to CPU
usage, the overhead of extra system calls can be unignorable.
Moreover, following the introduction of the flag, page table
isolation was added to mitigate the Meltdown vulnerability,
which increases system call overhead. Thus, we introduce a
new lightweight notification mechanism that embeds the noti-
fications in msg control. Similar to recvmsg, users can pass
msg control as a placeholder to sendmsg, and upon returning
of it, the data of the msg control will be updated by the kernel
so that users can get the completion notifications. For evalua-
tion, we add the new feature in msg zerocopy selftest, 7%-17%
performance gain in TCP and .3%-20% in UDP are observed,
the results are dependent on the selftest configuration.

Keywords
MSG ZEROCOPY, Notificaton Mechanism, Overhead Miti-
gation

Introduction
Linux has supported various of copy avoidance methods since
the early days, such as sendpage and splice[4]. In Linux-4.14,
Willem added a flag MSG ZEROCOPY [1] which extends
the copy avoidance mechanism to common socket send calls,
users can simply pass the flag to sendmsg system call, and
the underlying transmission will be zerocopy. Compared with
sendpage and splice, MSG ZEROCOPY is more efficient and
flexible to use. However, copy avoidance is not a free lunch,
the implementation of MSG ZEROCOPY replaces per byte
copy cost with page management and completion notifica-
tion. The pinning of the page changes the semantics of the
sendmsg system call. It temporarily shares the buffers be-
tween process and user stack. Returning of sendmsg does not
mean the completion of transmission but the page pinning, so
the process should not reuse or release the buffer at that time.
After the users get completion notifications from the kernel,
it means it’s safe to modify the buffer.

Figure 1 shows the typical process of the usage of
MSG ZEROCOPY. The reception of notifications incurs

ret = send(fd, buf, sizeof(buf), MSG_ZEROCOPY);
if (ret != sizeof(buf))

error(1, errno, "send");

pfd.fd = fd;
pfd.events = 0;
if (poll(&pfd, 1, -1) != 1 ||

pfd.revents & POLLERR == 0)
error(1, errno, "poll");

ret = recvmsg(fd, &msg, MSG_ERRQUEUE);
if (ret == -1)

error(1, errno, "recvmsg");

read_notification(msg);

Figure 1: Using MSG ZEROCOPY interface

extra system call overhead from poll and recvmsg, or
at least recvmsg. Assume that applications which use
MSG ZEROCOPY are sensitive to CPU usage, the overhead
of extra system calls can be unignorable. Especially with
the higher syscall overhead due to meltdown mitigations[2]
which is introduced after the sendmsg zerocopy. We try
to mitigate the notification overhead with a new mechanism
based on msg control.

Design
Stepping away from the existing method of obtaining no-

tifications through MSG ERRQUEUE, what we need is a
mechanism that can pass some information from the kernel
back to user space at the time sendmsg returns. It turns out
that we already have a similar mechanism in recvmsg.

Users can pass msg control as a placeholder to recvmsg,
allowing the kernel to update the data segment of the con-
trol message with the information. This method enables the
kernel to send certain information back to the user. In this
method, the kernel can send some information back to the
user. Figure 2 is the code snippet from Linux net selftest
timestamping.c. In the function printpacket, the content of
msg control has been updated by the kernel, users can parse
it and traverse through each cmsghdr to specifically handle
them.

On the other hand, msg control in sendmsg is used for
sending information from the user to the kernel. In Figure

struct {
struct cmsghdr cm;
char control[512];

} control;

...
msg.msg_control = &control;
msg.msg_controllen = sizeof(control);

res = recvmsg(sock, &msg, recvmsg_flags|
MSG_DONTWAIT);

if (res >= 0)
printpacket(&msg, ...);

Figure 2: Usage of msg control in recvmsg

msg.msg_control = control;
msg.msg_controllen = CMSG_SPACE(control)

cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SO_TIMESTAMPING;
cmsg->cmsg_len = CMSG_LEN(sizeof(uint32_t));

val = sendmsg(fd, &msg, 0);
...
while (!recv_errmsg(fd)) {}

Figure 3: Usage of msg control in sendmsg

3, the user uses cmsg SO TIMESTAMPING to ask the kernel
to record timestamps of this sendmsg, so that they can call
recv errmsg later to get the information.

If we can support passing msg control as a placeholder to
sendmsg just like recvmsg, then we can get the zerocopy no-
tifications without extra system calls.

One might think of IO URING when saving system calls
is considered. The framework of IO URING makes it inter-
nally suitable for notifications, and it can also save system
calls, which serves the same goal as our mechanism. How-
ever, IO URING requires non-trivial modifications to the ap-
plications, while our design aims to be compatible with the
common socket API, and only needs minor modifications to
applications that already use MSG ZEROCOPY.

Figure 4 shows our paradigm of design. Users pass a cmsg
SCM ZC NOTIFICATION as a placeholder to sendmsg, and
upon retuning of it, users can get notifications by parsing
msg control.

The new feature of msg control in sendmsg will be com-
pletely compatible with the original usage. The users can pass
both the placeholder cmsg and the original cmsg to sendmsg,
and only the placeholder cmsg will be updated and returned
to the caller.

Our design expects information to be returned right after
sendmsg finishes. In the case of zerocopy notification, it’s
possible that after returning of a sendmsg, it can only get the
notifications for the previous sendmsgs excluding itself. The
returning of the current sendmsg does not mean the transmis-
sion is completed. This is acceptable in most cases, because
notifications have IDs.

However, assume an application has last several sendmsgs,
and will not invoke sendmsg in a relatively long period. These
sendmsgs may get empty notifications. How do we get noti-
fications for these trailing sendmsgs? We expect our notifi-

cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_type = SCM_ZC_NOTIFICATION;
...
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_type = SO_TIMESTAMPING;
...
ret = sendmsg(fd, &msg, MSG_ZEROCOPY);
if (ret >= 0) {

print_zc_info(&msg, ...);
hanlde_timestamping();

}
// Optional, for possible trailing notifications
ret = recvmsg(fd, &msg, MSG_ERRQUEUE);
read_notification(msg);

Figure 4: Expected usage of msg control in sendmsg
struct msghdr {

// msg_control related fields
union {

void *msg_control;
void __user *msg_control_user;

};
bool msg_control_is_user : 1;

}

static int ____sys_sendmsg(...) {
unsigned char ctl[sizeof(struct cmsghdr) + 20]
__aligned(sizeof(__kernel_size_t));
...
if (ctl_len > sizeof(ctl)) {

ctl_buf = sock_kmalloc(sock->sk, ctl_len,
GFP_KERNEL);

if (copy_from_user(ctl_buf, msg_sys->
msg_control_user, ctl_len))

goto out_freectl;
msg_sys->msg_control = ctl_buf;
msg_sys->msg_control_is_user = false;

}
...

}

Figure 5: msg control in sendmsg

cation method to be compatible with the original one so that
users can always use it as a fallback. Actually, in our imple-
mentation, users can even interleavingly use these two meth-
ods, or in hybrid mode.

Implementation
Current msg control in sendmsg

Before diving into the details of implementation, let’s re-
view the current msg control related logic in sendmsg in Fig-
ure 5. Struct msghdr has a union that includes either a ker-
nel pointer msg control or a user pointer msg control user.
Guided by the bit flag msg control is user, the kernel knows
what kind of pointer is stored in the union, so that it can read
from or write to the pointer correctly.

In sys sendmsg, the msg control of msg sys, which
was a user pointer, is overwritten by a kernel pointer. It’s
either from a kernel stack or sock kmalloc depending on the
ctl len. The reason for the overwriting is for the convenience
of the further reading and writing in the kernel. Any updates
will only affect the kernel buffer instead of the user buffer. It
is the reason why sendmsg does not support cmsg control as
recvmsg.

static int sendmsg_copy_cmsg_to_user(struct msghdr
*msg_sys,

struct user_msghdr __user *umsg)
{

struct msghdr msg_user = *msg_sys;
...
msg_user.msg_control_is_user = true;
msg_user.msg_control_user = umsg->msg_control;
cmsg_ptr = (unsigned long)msg_user.msg_control
;
for_each_cmsghdr(cmsg, msg_sys) {

if (!CMSG_OK(msg_sys, cmsg))
break;

if (!cmsg_copy_to_user(cmsg))
continue;

put_cmsg(&msg_user, cmsg->cmsg_level, cmsg
->cmsg_type, cmsg->cmsg_len - sizeof(*cmsg),
CMSG_DATA(cmsg));
}
// Update of msg_controllen and msg_flags
return err;

}

static int ____sys_sendmsg(...)
{

...
msg_sys->msg_control_copy_to_user = false;
err = __sock_sendmsg(sock, msg_sys);
...
if (msg && msg_sys->msg_control_copy_to_user
&& err >= 0) {
ssize_t len = err;

err = sendmsg_copy_cmsg_to_user(msg_sys, msg
);
if (!err)

err = len;
}

out_freectl:
if (ctl_buf != ctl)

sock_kfree_s(sock->sk, ctl_buf, ctl_len);
out:

return err;
}

Figure 6: Implementation

Generic cmsg copy back framework in sendmsg
In our implementation Figure 6, we have a generic frame-

work to copy cmsg back to the user as demanded. We in-
troduce a new bit flag msg control copy to user in msghdr
to denote whether some cmsgs need to be copied back. In

sock cmsg send, if a cmsg needs to be copied back, its spe-
cific handler function can update the kernel buffer directly
and set the new bit flag to true.

In sendmsg copy cmsg to user, we create a msg user from
msg sys, and update the msg control of it back to the original
user pointer. Then, we have a for loop traversing each cmsg
and find out the ones that need to be copied back. put cmsg
will handle the copy logic, which considers compat case so
that it works for both 32-bit and 64-bit programs.

SCM ZC NOTIFICATION
To make use of the generic copy back framework,

we need to first add the cmsg type in cmsg copy to user.
In sock cmsg send, we have the dedicated handler for
cmsg type SCM ZC NOTIFICATION in Figure 7. It gets

static inline bool cmsg_copy_to_user(struct
cmsghdr *__cmsg) {

return __cmsg->cmsg_type == SCM_ZC_NOTIFICATION;
}

int __sock_cmsg_send(struct sock *sk, ...) {
switch (cmsg->cmsg_type) {

case SCM_ZC_NOTIFICATION:
// Get the zc information from

MSG_ERRQUEUE
// Populate the msg_control kernel buffer

with the zc information
msg->msg_control_copy_to_user = true;

}
}

Figure 7: Code for SCM ZC NOTIFICATION

struct zc_info_elem {
__u32 lo;
__u32 hi;
__u8 zerocopy; // Whether it is zerocopy or
reverted back to copy

}

struct zc_info_usr {
__u64 usr_addr;
__u64 usr_size;

}

int __sock_cmsg_send(struct sock *sk, ...) {
switch (cmsg->cmsg_type) {

case SCM_ZC_NOTIFICATION:
...
zc_info_usr_p = (struct zc_info_usr *)

CMSG_DATA(cmsg);
usr_addr = (void *)(uintptr_t)(

zc_info_usr_p->usr_addr);
...
// Get the zc information and stores it

into a kernel buffer, then copy to user
copy_to_user(usr_addr, &zc_info_kern,

copy_size)
...

}
}

Figure 8: Alternative method based on msg control

the completion notifications from the same data source with
the original method, and then populate the msg control
kernel buffer with the zc information. Finally, it sets
msg control copy to user bit flag to true to trigger the copy
back function later.

Limitations and Workarounds
The overhead in hotpath of sendmsg
In the hotpath of sendmsg, our method adds a minor cost of
initialization and condition check for every other sendmsgs
that do not use the new feature. We plan to add a static branch
in sys sendmsg to make the branch a NOOP in the
common case, and only enable it on the first setsockopt
SO ZEROCOPY.

The ABI change of sendmsg
This framework incurs the ABI change of sendmsg, which

changes the semantics of msg control. This is the main con-

do {
sends_since_notify++;
do_sendmsg(fd, &msg, cfg_zerocopy, domain);

if (sends_since_notify >=
cfg_notification_limit) {

do_recv_completions();
sends_since_notify = 0;

}
} while (gettimeofday_ms() < tstop);

Figure 9: msg zerocopy selftest

cern of this method, it needs more opinions from the commu-
nity before it can be merged into the mainline. As a fallback,
we have another proposal that requires a change in the han-
dler of SCM ZC NOTIFICATION only.

Instead of passing msg control as a placeholder, we embed
struct zc info usr, which includes a user address pointing to
an array of zc info elem and the size of this array, into the
cmsg. In the handler of SCM ZC NOTIFICATION, the ker-
nel retrieves the zc information from MSG ERRQUEUE and
copies at most some size of elements to the user address.

This trick circumvents having to deal with compat issues
and having to figure out copy to user in sys sendmsg.
However, this is quite hacky, from an API design point of
view, and still needs more opinions from the community.

Evaluation
We reuse the net selftest msg zerocopy.c with modification

for the new method to do the evaluation. In the selftest, there
are two localhost sockets, one for sending, and the other one
for receiving. As shown in Figure 9, the sending socket keeps
calling sendmsg at a certain period. After some number of
sendmsgs, it will receive the remaining completion notifica-
tions. At the end of the selftest, it will output the throughput
in this period, the higher the throughput, the better the perfor-
mance is.

When the notification interval is 1, which means the send-
ing socket will get notifications after each one sendmsg. In
this case, the overhead of the original method is the highest,
for each sendmsg, there is a corresponding recvmsg. In this
case, our method has a 16% performance gain in TCP and
around 20% in UDP.

TCP v4 TCP v6 UDP v4 UDP v6
ZC(MB) 7523 7706 7489 7304
New ZC(MB) 8834 8993 9053 9228
Gain 17.42% 16.70% 20.88% 26.34%

When notification the interval is 32, which means the send-
ing socket will get notifications after each 32 of sendmsgs.
which means less overhead of poll + recvmsg for the original
method. In this case, the new method has around 7% CPU
savings in TCP and slightly better CPU usage in UDP. In the
context of the selftest, notifications of TCP are more likely to
be out of order than UDP, it’s easier to coalesce more notifi-
cations in UDP. The original method can get one notification
with a range of 32 in a recvmsg most of the time. In TCP,
most notifications’ range is around 2, so the original method

needs around 16 recvmsgs to get notified in one round. That’s
the reason for the ”New ZCopy / ZCopy” diff in TCP and
UDP here.

In conclusion, when the notification interval is small or no-
tifications are hard to coalesce might because of being out of
order, the new mechanism is highly recommended. Other-
wise, the performance gain from the new mechanism is very
limited.

TCP v4 TCP v6 UDP v4 UDP v6
ZC(MB) 8842 8735 10072 9380
New ZC(MB) 9366 9477 10108 9385
Gain 6.00% 8.28% 0.31% 0.01%

Possible Use Cases
Besides MSG ZEROCOPY, any other use cases where users
need to obtain information from the kernel via a combination
of sendmsg and recv errmsg could potentially benefit from
this method, such as timestamps.

On the other hand, Homa[3], a receiver-driven low latency
transport protocol, could also benefit from the mechanism. In
homa send, users need to pass down a homa sendmsg args
structure as an argument, and upon returning, homa rpc
id in this struct needs to be updated for further use by
the user space. While passing msg control carrying the
homa sendmsg args to sendmsg, Homa sets msg controllen
to 0 to avoid the msg control being overwritten to a kernel
buffer in sys sendmsg. Although it works for Homa, it is
very hacky, and compromises the semantics of msg control.
Our method could be helpful in this case.

Conclusion
In this paper, we identify the overhead of system calls intro-
duced by the completion notifications in MSG ZEROCOPY.
We try to solve the problem by supporting copying some in-
formation back to the user upon returning of sendmsg based
on msg control. By leveraging this new feature, we introduce
a new notification mechanism for MSG ZEROCOPY. In the
experiments, compared with the original method, we get 7%-
17% performance gain in TCP and .3%-20% in UDP. When
the notification interval is small or notifications are hard to
be coalesced might because of being out of order, the new
mechanism is highly recommended. Otherwise, the perfor-
mance gain from the new mechanism is very limited. Our
implementation method introduces a change in the ABI of
sendmsg, a workaround does not need any change to sendmsg
but makes the API of msg control hacky. Both methods need
more opinions from the community.

References
[1] de Bruijn, W., and Dumazet, E. 2017.

sendmsg copy avoidance with msg zerocopy.
https://netdevconf.info/2.1/papers/
debruijn-msgzerocopy-talk.pdf. Accessed:
2023-10-05.

[2] Lipp, M.; Schwarz, M.; Gruss, D.; Prescher, T.; Haas, W.;
Fogh, A.; Horn, J.; Mangard, S.; Kocher, P.; Genkin, D.;
Yarom, Y.; and Hamburg, M. 2018. Meltdown: Reading

kernel memory from user space. In 27th USENIX Security
Symposium (USENIX Security 18).

[3] Montazeri, B.; Li, Y.; Alizadeh, M.; and Ousterhout, J.
2018. Homa: a receiver-driven low-latency transport pro-
tocol using network priorities. In SIGCOMM ’18: Pro-
ceedings of the 2018 Conference of the ACM Special In-
terest Group on Data Communication, 221–235. ACM.

[4] Torvalds, L. 2006. Explaining splice() and tee(). LKML
email thread. (Re: Linux 2.6.17-rc2).

