Asymmetric Network
Processing to Reduce Jitter

Satish Kumar
satish.kumar@bytedance.com
ByteDance
System Technology Engineering (STE)

Agenda..

* Commonly used event loop designs.

* Preferred network configuration.

* Analyze the Jitter introduced.

* Adynamic approach to handle the jitter.

Linux Kernel Networking Stack

* Pipeline by design

* Runs inside two context: IRQ

1. IRQ Context (NIC IRQ + SoftIRQ) Contexts
= Receiver stack
2. Application Context Receiver

Stack
= Sender stack

Network Execution Models

DPDK Linux Kernel
Gm To Completion Pipeline \
core 1
) core 1 core 2 core 3
: P1 P2 - P3
@2-4-: @ - @:.4..:
Y

__®® %

* Kerneldoes the scheduling and provide concurrent safe environment.

Scale-Out Configuration

* |deally

o The receiver and sender stack should run on the same CPU
= For example, by using RFS/aRFS (Receiver Flow Steering)
o To have better cache relevance

 But that’s not the case, due to

o Application uses single thread receiver architecture
= Multiplex read 10s

o Depends upon
= Kernel threads for scalability

* Normally used is scale-out configuration
o By using NIC multi-queue (RSS: Receive Side Scaling)

Event Loop Architectures

Process Read Process & Send
> User Threads

Read 4 _Event Loop Send Event Loop

Epoll Wait Epoll Wait

* Redis and NetPoll RPC Framework
* One to Many relation between application receiver thread and kernel SoftIRQ threads.

-

Jitter in Scale-Out

e Kernel receiver stack runs on most CPUs
* Polluting caches

* Frequently interrupts the application execution:
* NICIRQ
 SoftlIRQ

 So if we think (and highlighted in multiple documents):
* Thereis no logical sharing between the receiver and application context.
* One process packet header, other consumes the payload.
* [t make sense to separate the two context.

Asymmetric Network Processing (ANP)

Socket / IOUring Queues

o —— — - o ——— ——— —

S ———

Packet Header Processing

4’@@@ i

_ e e e e e e e e e o . — = = — — =

core 4..n

Payload Consumption

Isolates receiver context from
application context by:

1.
2.

3.

|dentifying CPUs to
reserve for receiver stack.

Modify the flow
hash indirection table in
the NIC to divert all
packet equally to
the reserved CPUs.
n Ethtool —X
<dev> equal <#reserved_cp
us>
Change application task
affinity to remaining CPUs.

* TXqueuesneedstobe
mapped to

Analysis

* Ping pong client server benchmark
o BmoO: redis like architecture
o Bm1: netpoll like architecture

o The server modifies the data.
o Pfifogdiscisin use.

* Value size 1KB
* Total CPUs 20
* CPUsreserved in ANP for bmO and bm1 are 8 and 4 respectively.

* Numbers measured on server side, where each server creates four event loop
of similar type.

Analysis continues..

P99 Latency
3000 [] 800
% 700 -bmO-symm messss bml-sym s .
= 288 ’PmO—asymm mmmmbml-asymm e]
_ 2500 e 1T5 3_77 - 18.1% é‘ %88 i
: o — 3 10 :
% 2000 + 1’ . 100 200 300 500 700
=)
= ~ . 13.8%
< z <% ?12 7% ? ? P999 Latency
2 1500 | L3.8% :
= +7.9% —_
= E
bm0-symm —+ -
1000 |- 74, bm0-asymm < 2
a bml-symm - 2
bm1l-asymm —
| | | 1 | 1 |
100 200 300 400 500 600 700 100 200 300 500 700
TCP Connections

Throughput increase with number of connections.
o 2-18% increase

Significant reduction in 99 and 99.9 percentile latencies.
o 10-50%

10

Analysis continues..

bm(-symm bm0-asymm || bml-symm bm]-asymm
msfructions 3972234172663 | 3971267766582 || 5376436857531 | 5140460280980 |
mst per cycle 125 1.32 108 114]
tma_backend_bound 478 46.2 30.1 50 |
tma_bad_speculation 25 26 44 43|
tma frontend bound 232 233 22.6 AT
ma_retiring 264 219 29 U1]

bm0 bml
MEM_INST _RETIRED.ANY 03% | 4.7%
CYCLE_ACTIVITY.STALLS MEM_ANY | 2.8% | 7.9%
EXE_ACTIVITY.BOUND_ON_STORES 154% | 36.1%
CYCLE_ACTIVITY.STALLS LID MISS | -5.6% | 5%
CYCLE_ACTIVITY.STALLS L2 MISS 53% | 5%
CYCLE_ACTIVITY.STALLS L3_MISS 94.6% | 91.1%
ICACHE_TAG.STALLS 33.3% | 24.7%
ICACHE_DATA.STALLS 14.8% | 29.8%

* Topdown analysis shows reduction of bottleneck on frontend as well as backend.

* |Improves instruction retiring and provide better instruction per cycle
» Stalls on Frontend caches (TLB and L1 Instruction cache) reduce by ~30%.

e Slightincrease in local core caches (L1 and L2) and decrease on shared cache (L3) signify cross core
communication after the isolation.

11

Analysis continues..

bm0
tcp_ack -53.1%
_copy_to_iter 1.5%

° : : sock_poll -23.8%
Sa mp lin g L2 miss skb_release_data -42.1%
o Cross core communication tep.recvmsg_locked 12.1%

__check_object_size -1.9%
on epoll event tcp_queue_rcv “12.7%
subsystem, socket queue and skb is tep—poll -29.3%
ted tcp_check _space -77.2%
EXpected. skb_attempt_defer free 9.4%
o More investigation is needed to raw read lock-irgsave 103.7%
. tcp_rcv_established -65.1%
reduce data shari ng. _list_del _entry_valid_or_report -5.6%
o Same delta on _copy._to_iter confirm no —inet lookup established -120.4%
: . do_epoll _wait -97.6%
log|c.al sharing be.twe.en kernel napi._pp_put_page 53.6%
receiver and application context. _lock _text_start 72.2%
native_queued_spin_lock slowpath | -569.9%

Table 3: CYCLE_ACTIVITY.STALLS_L2_MISS event sam-
pling.

12

KIOPS

KIOPS

Redis Memtier Benchmark P99 Latency Redis Memtier Benchmark P999 Latency Redis Memtier Benchmark
3000 T T I 1 2 T T T T T 5 T T T T
2500 | 114.96% 1% 1 % % @ W% 4 -54% -
2000 |- ¥ 2007%112225% 7 " 8% 1% | = 2 3 -24% 5
iggg - " symmettgc] % 04 % 199% 14% 17%
500 7\"‘41221—% | I | | E}Symmel ¢ | 0'% 0
4 6 8 10 12 14 16 18 20 4 8 12 16 20 4 8 12 16 20
Redis Servers Redis Servers Redis Servers
Netpoll RPC Benchmark P99 Latency Netpoll RPC Bencmark P999 Latency Netpoll RPC Benchmark
700 T T T T 3 T T T T 5 T . T T
650 I B i 2.5 0% 4 Symmetric - mmm— i
600 |-, EE%& 776% — 1651% - 15% w 12 11% , 3 | asymmetric mmm— 2% |
550 17_16_4_(?0_,_,.7— . _ = L5 17% = 2 9% n
symmetric 1 g, 14% 129% 15%
200 |- asymmetric < 0.5 © 1 9% 8
450 L \ | | I l I 0 0
100 200 300 400 500 600 700 100 200 300 500 700 100 200 300 500 700
TCP Connections TCP Connections TCP Connections

Redis and NetPoll Benchmark Results

* Throughput increase 4-22% and 5-8%
* Latency decrease 14-27% and 2-17%.

* Increase of -24% and -54% P999 latency with higher Redis server count is
due to less available application concurrency after isolation.

13

ANP: When and How

* Reserving CPUs reduce concurrency available to the application.
o) Not applicable under high concurrency requirements.
o For ex: Show high tail latency, reduced in throughput etc.

* Not all serversin Datacenter are highly loaded.

 Dynamically identify the reserved CPUs:

o) 'si' CPU utilization.
o) Application Feedback loop: average latency and throughput
o Kernel Feedback loop?

e Comment on CPU utilization:
o Inmostscenarios we found its reduced
o Andin otheritis proportional to the throughputincrease
o Butrarelywe have seen that it consumes more.

* jo_uring
o Netpoll like architecture can benefit from softirq integration with io_uring
o Three cpu jumps:irg-> epoll,recv -> business
o data copy to userspace inside softirq context

14

Conclusion

* Asymmetric processing provide better performance metrics:
o Efficiency in frontend caches
o Interference free execution

* Dynamic reservation of CPUs:
o Concurrency consideration from the application.
o Afeedbackloopis needed.

* Provides a good balance between throughtput, latency and cpu utilization.

* Work is needed:

o Reduce data sharing between the two contexts.
o Investigate other scenarios where qdisc queues are involved.

15

* More details on paper.

* Questions?

e Contact:

O satish.kumar@bytedance.com

0 ByteDance, System Technology Engineering (STE)

16

mailto:satish.kumar@bytedance.com

	Slide 1: Asymmetric Network Processing to Reduce Jitter
	Slide 2: Agenda..
	Slide 3: Linux Kernel Networking Stack
	Slide 4: Network Execution Models
	Slide 5: Scale-Out Configuration
	Slide 6: Event Loop Architectures
	Slide 7: Jitter in Scale-Out
	Slide 8: Asymmetric Network Processing (ANP)
	Slide 9: Analysis
	Slide 10: Analysis continues..
	Slide 11: Analysis continues..
	Slide 12: Analysis continues..
	Slide 13: Redis and NetPoll Benchmark Results
	Slide 14: ANP: When and How
	Slide 15: Conclusion
	Slide 16

