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Agenda..

* Commonly used event loop designs.

* Preferred network configuration.

* Analyze the Jitter introduced.

* Adynamic approach to handle the jitter.



Linux Kernel Networking Stack

* Pipeline by design

* Runs inside two context: IRQ

1. IRQ Context (NIC IRQ + SoftIRQ) Contexts
= Receiver stack
2. Application Context Receiver

Stack
=  Sender stack




Network Execution Models
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* Kerneldoes the scheduling and provide concurrent safe environment.




Scale-Out Configuration

* |deally

o The receiver and sender stack should run on the same CPU
= For example, by using RFS/aRFS (Receiver Flow Steering)
o To have better cache relevance

 But that’s not the case, due to

o Application uses single thread receiver architecture
= Multiplex read 10s

o Depends upon
= Kernel threads for scalability

* Normally used is scale-out configuration
o By using NIC multi-queue (RSS: Receive Side Scaling)



Event Loop Architectures

Process Read Process & Send
> User Threads

Read 4 _Event Loop Send Event Loop

Epoll Wait Epoll Wait

* Redis and NetPoll RPC Framework
* One to Many relation between application receiver thread and kernel SoftIRQ threads.
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Jitter in Scale-Out

e Kernel receiver stack runs on most CPUs
* Polluting caches

* Frequently interrupts the application execution:
* NICIRQ
 SoftlIRQ

 So if we think (and highlighted in multiple documents):
* Thereis no logical sharing between the receiver and application context.
* One process packet header, other consumes the payload.
* [t make sense to separate the two context.



Asymmetric Network Processing (ANP)

Socket / IOUring Queues
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Payload Consumption

Isolates receiver context from
application context by:

1.
2.

3.

|dentifying CPUs to
reserve for receiver stack.

Modify the flow
hash indirection table in
the NIC to divert all
packet equally to
the reserved CPUs.
n Ethtool —X
<dev> equal <#reserved_cp
us>
Change application task
affinity to remaining CPUs.

* TXqueuesneedstobe
mapped to



Analysis

* Ping pong client server benchmark
o BmoO: redis like architecture
o Bm1: netpoll like architecture

o The server modifies the data.
o Pfifogdiscisin use.

* Value size 1KB
* Total CPUs 20
* CPUsreserved in ANP for bmO and bm1 are 8 and 4 respectively.

* Numbers measured on server side, where each server creates four event loop
of similar type.



Analysis continues..
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Throughput increase with number of connections.
o 2-18% increase

Significant reduction in 99 and 99.9 percentile latencies.
o 10-50%
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Analysis continues..

bm(-symm bm0-asymm || bml-symm bm]-asymm
msfructions 3972234172663 | 3971267766582 || 5376436857531 | 5140460280980 |
mst per cycle 125 1.32 108 114 ]
tma_backend_bound 478 46.2 30.1 50 |
tma_bad_speculation 25 26 44 43|
tma frontend bound 232 233 22.6 AT
ma_retiring 264 219 29 U1 ]

bm0 bml
MEM_INST _RETIRED.ANY 03% | 4.7%
CYCLE_ACTIVITY.STALLS MEM_ANY | 2.8% | 7.9%
EXE_ACTIVITY.BOUND_ON_STORES 154% | 36.1%
CYCLE_ACTIVITY.STALLS LID MISS | -5.6% | 5%
CYCLE_ACTIVITY.STALLS L2 MISS 53% | 5%
CYCLE_ACTIVITY.STALLS L3_MISS 94.6% | 91.1%
ICACHE_TAG.STALLS 33.3% | 24.7%
ICACHE_DATA.STALLS 14.8% | 29.8%

* Topdown analysis shows reduction of bottleneck on frontend as well as backend.

* |Improves instruction retiring and provide better instruction per cycle
» Stalls on Frontend caches (TLB and L1 Instruction cache) reduce by ~30%.

e Slightincrease in local core caches (L1 and L2) and decrease on shared cache (L3) signify cross core
communication after the isolation.
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Analysis continues..

bm0
tcp_ack -53.1%
_copy_to_iter 1.5%

° : : sock_poll -23.8%
Sa mp lin g L2 miss skb_release_data -42.1%
o Cross core communication tep.recvmsg_locked 12.1%

__check_object_size -1.9%
on epoll event tcp_queue_rcv “12.7%
subsystem, socket queue and skb is tep—poll -29.3%
ted tcp_check _space -77.2%
EXpected. skb_attempt_defer free 9.4%
o More investigation is needed to raw read lock-irgsave 103.7%
. tcp_rcv_established -65.1%
reduce data shari ng. _list_del _entry_valid_or_report -5.6%
o Same delta on _copy._to_iter confirm no —inet lookup established -120.4%
: . do_epoll _wait -97.6%
log|c.al sharing be.twe.en kernel napi._pp_put_page 53.6%
receiver and application context. _lock _text_start 72.2%
native_queued_spin_lock slowpath | -569.9%

Table 3: CYCLE_ACTIVITY.STALLS_L2_MISS event sam-
pling.
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KIOPS

KIOPS
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Redis and NetPoll Benchmark Results

* Throughput increase 4-22% and 5-8%
* Latency decrease 14-27% and 2-17%.

* Increase of -24% and -54% P999 latency with higher Redis server count is
due to less available application concurrency after isolation.
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ANP: When and How

* Reserving CPUs reduce concurrency available to the application.
o) Not applicable under high concurrency requirements.
o For ex: Show high tail latency, reduced in throughput etc.

* Not all serversin Datacenter are highly loaded.

 Dynamically identify the reserved CPUs:

o) 'si' CPU utilization.
o) Application Feedback loop: average latency and throughput
o Kernel Feedback loop?

e Comment on CPU utilization:
o Inmostscenarios we found its reduced
o Andin otheritis proportional to the throughputincrease
o Butrarelywe have seen that it consumes more.

* jo_uring
o Netpoll like architecture can benefit from softirq integration with io_uring
o Three cpu jumps:irg-> epoll,recv -> business
o data copy to userspace inside softirq context
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Conclusion

* Asymmetric processing provide better performance metrics:
o Efficiency in frontend caches
o Interference free execution

* Dynamic reservation of CPUs:
o Concurrency consideration from the application.
o Afeedbackloopis needed.

* Provides a good balance between throughtput, latency and cpu utilization.

* Work is needed:

o Reduce data sharing between the two contexts.
o Investigate other scenarios where qdisc queues are involved.
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* More details on paper.

* Questions?

e Contact:

O satish.kumar@bytedance.com

0 ByteDance, System Technology Engineering (STE)
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