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Challenges with Multi-S/W stack Support
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Working Across S/W Stacks

● Holistic view of all H/W resources in use
○ Not by silo (S/W stack), but all of them at once - with metadata showing stack
○ S/W view and H/W view

● Device specific details can vary across vendors
○ New H/W is developed for reasons
○ Inevitable that there are vendor unique features or details
○ Vendors are trying to be more open but there are roadblocks
○ Saying “out-of-tree” until some feature or configuration knob is “standardized” only 

hurts users

● Introspection filters
○ process, uid, virtual device, PCI device



devlink

● An API at the PCI device layer
○ Seems logical to use across S/W stacks

● Legacy is a netdev focus
○ ALL code changes go through netdev and its maintainers’ lens and view of the 

world

● Crossing S/W subsystems means support for other subsystems' details
○ Kuba has made no secret of his disdain for Infiniband. Conflict wrt what constitutes 

a legitimate feature or change?

● Ready to expand devlink to RDMA / IB concepts?
○ Memory regions, domains, queue details - and queues used outside of netdev
○ all flow steering rules
○ vendor specific functionality



Multi-PF device



Extensions to PHC APIs for PTP timers



fwctl



Realities

● It is 2024 not 2004; Linux is the dominant DC OS, not “a hobbyist OS”
○ We should keep in mind the openness to ideas that got us here

● Linux and its ecosystems thrive when we are optimistic about possibilities
○ Everything must evolve to survive

● Linux is about choices
○ Focus on creating solid primitives / building blocks with well defined interfaces
○ Allow them to be put together in a way that people decide what overhead they want and what 

they do not



Realities

● Linux is used by and driven by businesses

● Many established, entrenched camps - not going to change
○ netdev / socket API, RDMA, DPDK (userspace stacks), ...

● OOT drivers - established and forced in so many ways
○ OOT changes are fore real use cases, real problems
○ Existence of OOT modules is not helpful to users, vendors or the growth and development of 

Linux

● H/W vendors are not going to open source their firmware and device designs
○ Devices have differences; S/W needs to acknowledge and deal with it



Kernel APIs that Enable Varying Degrees of Bypass

● Device: /sysfs, UIO and VFIO

● Networking: RDMA, OVS, ebpf, XDP, AF_XDP, userspace stacks (DPDK)

● AF_XDP
○ Bypasses Linux networking stack for datapath - packets do not traverse the stack
○ Deemed acceptable by netdev maintainers why? Because it uses networking APIs and ndos 

for control and some level of monitoring
○ Some heavy rationalization that it is a step in the right direction as it involves more standard 

APIs and code



What is fwctl?

● New subsystem intended to bring some common rules and order to the 
growing pattern of exposing a secure FW interface directly to userspace

● Focus on debugging, configuration, and provisioning
○ Vendor specific details

● Define and document the rules that a device must follow to expose a 
compatible sysfs style RPC for a locked down kernel



fwctl

● Move in the direction of common code to best extent possible
○ Very similar to the AF_XDP argument
○ Open source driver, open source userspace tooling
○ Device specific passthrough for device specific commands

● Decoupling from a given S/W stack and its abstractions

● Allows self-documenting design for tunables

● No delay between firmware release and usability of some knob
○ No waiting for changes to propagate out to kernels, distros, ...  == huge benefit for users

● Other domains have similar needs - e.g., CXL, NVMe



fwctl

● Pushback along the lines of “devlink” or other standard API will suffer is a 
strawman argument

○ Linus has deflected such reasoning as well. See ebpf scheduler response

● Users and Linux ecosystem are better off with in-tree code that everyone can 
review and work on

○ Another explicit comment from Linus

https://lore.kernel.org/all/CAHk-=wg8APE61e5Ddq5mwH55Eh0ZLDV4Tr+c6_gFS7g2AxnuHQ@mail.gmail.com/



Existing devlink param

$ devlink dev param
pci/0000:0b:00.0:
   name io_eq_size type generic
    values:
      cmode driverinit value 1024
  name event_eq_size type generic
    values:
      cmode driverinit value 4096
  name flow_steering_mode type driver-specific
    values:
      cmode runtime value smfs
  name fdb_large_groups type driver-specific
    values:
      cmode driverinit value 15

  name esw_port_metadata type driver-specific
    values:
      cmode runtime value true
  name esw_multiport type driver-specific
    values:
      cmode runtime value false
  name hairpin_num_queues type driver-specific
    values:
      cmode driverinit value 2
  name hairpin_queue_size type driver-specific
    values:
      cmode driverinit value 1024



mlx5 Example of Current Tunables

Download mft tools and install
● https://network.nvidia.com/products/adapter-software/firmware-tools/

sudo mst start

sudo mlxconfig -a -d /dev/mst/<dev entry>  q
long list of tunables

sudo mlxconfig -a -d /dev/mst/<dev entry>  i
Detailed description of tunables



Detailed View of What is Needed vs devlink

(see command outputs)


