Characterizing IOTLB Wall for Multi-
100-Gbps Linux-based Networking

Alireza Farshin (NVIDIA)* and Luigi Rizzo (Google)

I T

* Work was done at KTH Royal Institute of Technology as part of Google PhD Fellowship Netdev 0x18

Higher Bandwidth Demand

4

Online Services Al

: ©
: ©

(7
)

VM Hosting Industrial Digitalization

VR & AR

((g’))

5G/6G

Link Speeds Move Quickly to 1 Tbps

Every 6.72 ns a new (64-B+20-B*)

packet arrives at 100 Gbps
400

. . _ 1T | GbE TbE

* Inter-arrival time = 10x 100G i @ O/

faster than memory 100G | .

access latency éllgg | GbE

; i Link Speed 1

* Communication oo GbEC{

between different | 100 i

system components 100M o % |

Mb ethernet alliance
could become a oM IS I A —
bottleneck 1980 1990 2000 2010 2020 2030
Standard Completed

* 7B preamble + 1B start-of-frame delimiter + 12B inter-frame gap =20 B 3

What are the Communication
Bottlenecks when Transferring

Packets between NIC and CPU

Data Path between NIC and CPU

CPU Socket
* NIC access memory through the - HIIBOOO
PCle bus .% 2 @@@
* On some architectures, NIC can } S %%%
access Last Level Cache (LLC) | W S
to reduce latency (e
* DDIO* on Intel Xeon processors ML‘;‘(‘)‘W
* CPU later access the data

* Data Direct I/0O Technology

|IOMMU*

* Without IOMMU, CPU provides
the Physical Address (PA) of the
buffers to the |/O device

*1/0O Memory Management Unit

Main
Memory

CPU Socket

emory Controller

©)
©)
©)

PA

|IOMMU*

CPU Socket

* With IOMMU, CPU provides |/0O
Virtual Address (IOVA) of the
buffer to the I/O device

* Restrict DMAs to specific regions
* Provide I/O security

 Facilitate virtualization and
backward compatibility Main

* |IOMMU translates IOVA to PA on
every |/O request //

* Like MMU, a cache, called IOTLB**,

is used to accelerate translations Translates
IOVA to PA

©)
©)
©)

emory Controller

IOVA

*1/0O Memory Management Unit **1/0 Translation Lookaside Buffer 7

Bottlenecks — Bandwidth

CPU Socket

* Allcomponents in the path must sustain
line rate

* Short-term variability can be absorbed by
on-NIC buffers

,M*ry Controller

* PCle bus
* PCle 4.0 supports 16 Gbps per lane Mai
* 16 lane > 256 Gbps Me:.,':ry

e PCle 5.0doubles the rate

e Memory interconnect or DDIO
* Memory
« [OMMU/IOTLB

Bottlenecks — Bandwidth Delay Product

* Each boundary has limited buffering

* Each transaction keeps buffer busy for some time (T) until it is completed
* Throughput < buffersize /T

* PCle can buffer around 32-64 KiB* per direction

* For PCle MRd**, the read buffer (completion buffer) stays busy for the
time between a request is sent and the data is received

* 64 KiB worth of completion buffers allow only 2.6 ps read latency at 200 Gbps

Host PCle

PCle
MRd

4 4)

Memory
Subsystem

NIC

Data

. J

Read
Data

* Ki (kibi) =210 ** Memory Read

Bottlenecks — Bandwidth Delay Product

* Each boundary has limited buffering
* Each transaction keeps buffer busy for some time (T) until it is completed

* Throughput < buffersize /T

4)
In this talk, we focus on IOMMU/IOTLB
_ J
PCI
: emory
RiIe Data Subsystem
_ J _
Write Complete
* Ki (kibi) = 210 ** Memory Write (Releases Credits) 10

Modeling Performance Bottlenecks

* |/O subsystem has an upper bound for the number of outstanding
DMA transactions

* This implicitly creates a throughput bottleneck (B)
* |deally, B >> Data path rate (i.e., NIC and PCle)

1* Buffer Size

TM*_I' TIOMML*
I Time to complete an Translation time'

/0O transaction
without IOMMU

11

|IOMMU Performance Overheads

——

1. IOVA Allocation/Deallocation
Addressed by previous works;

2. 10TLB Invalidations/Flushing — Typically Shé);vuulﬂjj additional
» Ensure higher degree of security

—

3. |IOTLB Misses
« Traverse the I/O page table to resolve a miss, causing

memory accesses and increqases Tiommu
Our focus J

12

Factors Affecting IOTLB Misses

1. Size and management policy of IOTLB
* Hardware dependent
* Different vendors have different implementations (undocumented)

2. Memory request pattern

* Affected by system configurations (e.g., MTU size, packet rate, drop rate)
* Offloading features (e.g., LRO, TSO)

* Buffer management (e.g., Page Pool)
* Mapping size (4-KiB, 2-MiB, and 1-GiB pages)*

* Ki (kibi) = 219, Mi (mebi) = 220, Gi (gibi) = 230

13

Impact of IOMMU on Throughput

Uittt O Lddits O

iPerf Client iIPerf Server
Intel Xeon Gold 6346 —g= NVIDIA/Mellanox
(Ice Lake) ConnectX-6

* |t uses 32 threads, 384 TCP connections, 128 KiB messages, and MTU=1500 (MSS=MTU-52) - Linux kernelv5.15

14

Impact of IOMMU on Throughput

Throughput (Gbps)

CPU Utilization (%)

150

100

50

100

I Maximum Achievable Rate IOMMU-OFF
i Saturated -
I L ' :
T
IOMMU-OFF

(4-KiB)

IOTLB-Bound

. Region |

IOMMU-ONT

100
Generator Rate (Gbps)

150 200

I Enabling IOMMU on an iPerf
receiver causes a significant
throughput drop

Despite having enough
computation power, OMMU
restrains the system from
achieving higher throughput

15

Measuring IOTLB Misses

* We report the number of IOTLB misses per unit of data (MiB)

* [t makes it possible to compare the IOTLB misses across different
rates and configurations

16

|OTLB Misses Per MiB at 200 Gbps

CJ
|OTLB Wall N - - :
[Excessive IOTLB misses builds up a wall,

ENENENEN causingthroughput drop

A 600 | | 30
o . .
52_5 500 | or X We see a sudden jumpin
=t o the number of IOTLB
B O . .
§ 400 20 & misses per MiB
S 300 15 B
> &
[200 [10 &
S IOTLB-Bound =
~ 100 hro Reoi 45 =
L ughput Drop egion [~
?30 o | | 0
% 0 50 100 150 200
<

Generator Rate (Gbps)

17

|OTLB Wall - 2-KiB Buffers

* MTU =1500, MSS = 1448
* 1 MiB requires 220/ 1448 = 725 RX buffers

* Each buffer uses half a 4-KiB page > ~362 x 4-KiB pages*

* |nitially, the RX descriptors are contiguous
* Only accessing the first buffer causes an IOTLB miss

* |f the device driver does not allocate any other pages

Buffer O

Buffer 1

Buffer 2

Buffer 3

Buffer 4

Buffer 5

} Page O

- Page 1

- Page 2

18

|OTLB Wall - 2-KiB Buffers

* Later, due to packet drops and slow buffer
recycling,

e Buffers are shuffled, which causes an
additional IOTLB miss

Buffer O

Buffer 4

Buffer 2

Buffer 1

Buffer 3

Buffer5

19

|OTLB Wall - 2-KiB Buffers

Misses suddenly increase

Generator Rate (Gbps)

* Due to slow recycling and having multiple queues

M 600 | — , 30

= |

g 500 [~ | 1 25

s 400 I | 1 20

UUJ) !

S 300 362+80*Misses 115
I

= \

O We think that the increase is due to

= having shuffled buffers

AN J

<

Throughput Drop (%)

20

|OTLB Wall - 4-KiB Buffers

p
A modest decrease in the number of IOTLB misses per MiB

can shift the rate at which throughput becomes a bottleneck

\

J

-
. % Al — IOTI_IBW_aII _' ” 3 30 —_
* Fewer |IOTLB misses 5 500 [5 [QTiBMisses/MiB 11oTLB-Bound| 25 X
o 1 1 1 1
(420 vs. 365) G 400 [A ALy 20 §
7] ‘ - ‘
n 1 1 1 ——
* IOTLB wall happensata = XXX 3
. m I SRS SRS I, S
higher rate (130 vs. 150) 2 200 | | i 108
% 100 —‘i?‘— 5 £
D 0 Lot ek X 1
o 0 50 100 150 200
<

Generator Rate (Gbps)

21

Impact of Offloading Features — TSO*

TSO reduces the number of IOTLB misses per MiB
and the throughput drop due to IOTLB wall

- - J
s 1200 x | | | >|< :SMMHSN Ei‘ﬁlg¥§88ﬁ):)l 200 .___]_ _____ _;. k._--g—.,. ,_'. ' '
5 1000 g TSy SRR PR EERE S AR AR] —~ BRI WLl NIy WG Sy S -
8_ :)‘.\.; : : 8 150 _!J ,,,,,,,, g,.—-TJ“s--‘ ,,,, "Q: ,,,,,,,,, Q_
a Rl e SRR SRR N Q0 -
ah ! S, ! (O] e ! ! ! ! ! : !
2 B R) € S . ot L S S IO SR SRR
= el s
m : : Q : : ‘ : : : : ‘
—1 4UU [s e cTToTTT N < ; ; ; —»+= Maximum Achievable Rate ‘
5 | g’ BO [----oeieeeeee e e -IOMMU-ON (4-KiB- - TSO ON) - -
O oo b i ek i o | | | ©— IOMMU-ON (4-KiB - TSO OFF) !
) c | | : f | | | |
S 0 | | | | | | | | — 0 | | | | | | | I
Q 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000 2000 3000 4000 5000 6000 7000 8000 9000
< MTU Size (Byte) MTU Size (Byte)

* TCP Segmentation Offload (TSO) 22

Impact of Packet Drops

Split pages are shuffled by the packet drops and TCP
re-transmission, causing more |IOTLB misses

Avg. IOTLB Misses per Mi
N
O
S
I

MTU Size (Byte)

* Luigi patch: https://lists.bufferbloat.net/pipermail/bloat/2021-October/016693.html

23

https://lists.bufferbloat.net/pipermail/bloat/2021-October/016693.html

How to Mitigate |IOTLB Wall?

* Use larger mappings (e.g., 2-MiB and 1-GiB)

Using 2-MiB huge pages* recovers the throughput drop caused by IOMMU

200

(Y
8]
-

[T
o
o

&)
o

Throughput (Gbps)

0

*We modified Page Pool API to use 2-MiB pages and allocate 512 x 4-KiB pages when performing bulk allocation.

|

| | | | | | | | | |
Maximum Achievable Rate IOMMU-OFF
i IOMMU-ON (2-MiB)
Z>psacacacacacaC)
IOMMU-ON (4-KiB)
]]]]]]]]]]
0O 20 40 60 80 100 120 140 160 180 200

Generator Rate (Gbps)

24

Using Larger Mappings — Challenges (1/3)

 Allocation and CPU cost

* Allocating 512 x 4-KiB physically contiguous pages are more difficult
* Compaction (coalescing) 512 pages is significantly more expensive
* [t may cause tremendous memory fragmentation in long-running systems

25

Using Larger Mappings — Challenges (2/3)

* Memory stranding
* Possible to reserve a few GB of memory based on BDP* at boot time

* We noticed existing drivers continually allocate pages due to slow
recycling, so it may be difficult to operate with a fixed-size page pool

* Bandwidth Delay Product

26

Using Larger Mappings — Challenges (3/3)

* Locality and buffer management

* |tis much more difficult to ensure locality with larger mappings as they
are split into smaller chunks (e.g., 512 x 4-KiB)

* More severe buffer shuffling

27

Buffer Shuffling with Larger Mappings

* Continual allocation
* No buffer recycling

* Using fixed-size (pre-allocated) pool
* 256 x 2-MiB huge pages
* 512 x 2-MiB huge pages

28

Buffer Shuffling with Larger Mappings

|IOTLB misses increase significantly over time when using
fixed-size pool due to buffer shuffling

91010 | | | | |

400 [o8y
200 Wnn_

[isses p

Fixed-size pools run out of buffers due to slow recycling

A" 4

O 2 4 6 8 10
Time (Minutes)

Avg.

Conclusion

* Shifting toward high link speeds could introduce new bottlenecks
In the system

* We modeled these bottlenecks and characterized IOTLB wall at
200 Gbps

* Supporting the upcoming 200/400-Gbps networking with larger
|IOTLB mappings demands fundamental changes in Linux kernel
memory management and I/0O management

O github.com/aliireza/iommu-bench

30

https://github.com/aliireza/iommu-bench

Backup Slides

Bottlenecks

1. PCle (PCle-Bench [SIGCOMM’18])
2. DDIO (ddio-bench [ATC’20]) _.%

3. Memory bandwidth (Host
Interconnect Congestion [HotNet’22]) |

4. |IOMMU/IOTLB (DAMN [ASPLOS’18], wain
iommu-bench [PeerJCS 23]) Memory

These problems will continue to grow
with higher bandwidth

CPU Socket

y Controller
‘o
N
o~
(@]
AN

a2/ e/
<

Meaér
—
o
-
~
F
0O

8

32

Benefits of Usmg Larger Mappmgs

/M

S 600 .
) o~ S

B 450 - \e e S)
2 200 F O IOMMU-ON (4-KiB) |

.cgo 3 IOMMU-ON (2-MiB)

m 150 [N

=

8 0 | | | | | | | l

'; 1000 2000 3000 4000 5000 6000 7000 8000 9000

< MTU Size (Byte)

K 2

= | | | | O IOMMU-ON (4—KiBI)
& 20 IOMMU-ON (2-MiB)|
8 15 F -
-ls 10 [- =) |
o

$ 5 -
5 0]]]] | 1
é’ 1000 2000 3000 4000 5000 6000 7000 8000 9000

MTU Size (Byte)

33

Per-Page Allocation Cost

- Allocation with 2-MiB (512 x 4-KiB)
Allocation with 64 x 4-KiB

CDF
coooon
o ONA OO

o
O
[y

0.01 0.1 1 10 100

Per-Page Allocation Time (us)

34

|OMMU - Prior Works (1/2)

* Utilizing the IOMMU Scalably [ATC’15]

* |Introduces deferred IOTLB invalidation and then optimizes the
implementation of dma_map() and dma_unmap() to minimize the locks
and waiting time to allocate an IOVA. They introduce a cache for recently
freed IOVA to avoid accessing the red-black tree holding pairwise-disjoint
ranges of allocated virtual I/O page numbers.

* DAMN [ASPLOS’18]

* Present a memory allocator to provide both security and performance. It
uses permanently mapped buffers for IOMMu to prevent performing extra
map/unmap. It is similar to our solution, but it focuses on managing 4-KiB
buffers and requires changes to the page data structure.

35

|OMMU - Prior Works (2/2)

* IOMMU [ASPLOS’15]

* Introduces a flat table to improve the performance of IOMMU, which is
based on the characteristics of circular ring buffers.

* There are more works that focus on DMA attacks (e.g., sub-4-KiB
vulnerabilities) and mapping VM pages into the IOMMU hardware.

36

Impact of Offloading Features — LRO*

LRO reduces the number of IOTLB misses per MiB, but not
enough to overcome the IOTLB wall in our testbed

o

s 600 T T

P G.._ 3 3 : : 3 : :
8 500 T
@ e '@.\ : : : : : :
=> : : ‘ : : : ;
g 300 P
|:I ! ! ! ! ! ! ! !
© 200 [
- IOMMU-ON (4-KiB - LRO OFF) - 200 Gbps 1 ‘
© 100 L IOMMU-ON (4-KiB - LRO ON) - 200 Gbps . |
S IOMMU-ON (4-KiB - LRO OFF) - 100 Gbps !

5 IOMMU-ON (4-KiB - LRO ON) - 100 Gbps ‘ ‘
S 0 | | | | | | | |
<

MTU Size (Byte)

* Large Receive Offload (LRO)

1000 2000 3000 4000 5000 6000 7000 8000 9000

Throughput (Gbps)

200

150 l.—

100

50 f

- _aef-+L—— X=X
O’

X IOMMU-OFF (LRO ON) - 200 Gbps
4 IOMMU-OFF (LRO OFF) - 200 Gbps
; | 8 IOMMU-ON (4-KiB - LRO ON) - 200 Gbps
: | IOMMU-ON (4-KiB - LRO OFF) - 200 Gbps

0

1000 2000 3000 4000 5000 6000 7000 8000 9000

MTU Size (Byte)

37

Other Analysis - Takeaways

* AMD EPYC 74F3 (3G-Milan) vs. Intel Xeon Gold 6346 (Ice Lake)

* IOMMU imposes a lower overhead on AMD EPYC, but it cannot achieve
line rate for MTUs smaller than 3000 bytes

* Intel E810 vs. NVIDIA/Mellanox ConnectX-6 at 100 Gbps

* NVIDIA/Mellanox results in a slightly smaller number of IOTLB misses

38

	Slide 1: Characterizing IOTLB Wall for Multi-100-Gbps Linux-based Networking
	Slide 2: Higher Bandwidth Demand
	Slide 3: Link Speeds Move Quickly to 1 Tbps
	Slide 4: What are the Communication Bottlenecks when Transferring Packets between NIC and CPU
	Slide 5: Data Path between NIC and CPU
	Slide 6: IOMMU*
	Slide 7: IOMMU*
	Slide 8: Bottlenecks – Bandwidth
	Slide 9: Bottlenecks – Bandwidth Delay Product
	Slide 10: Bottlenecks – Bandwidth Delay Product
	Slide 11: Modeling Performance Bottlenecks
	Slide 12: IOMMU Performance Overheads
	Slide 13: Factors Affecting IOTLB Misses
	Slide 14: Impact of IOMMU on Throughput
	Slide 15: Impact of IOMMU on Throughput
	Slide 16: Measuring IOTLB Misses
	Slide 17: IOTLB Misses Per MiB at 200 Gbps
	Slide 18: IOTLB Wall – 2-KiB Buffers
	Slide 19: IOTLB Wall – 2-KiB Buffers
	Slide 20: IOTLB Wall – 2-KiB Buffers
	Slide 21: IOTLB Wall – 4-KiB Buffers
	Slide 22: Impact of Offloading Features – TSO*
	Slide 23: Impact of Packet Drops
	Slide 24: How to Mitigate IOTLB Wall?
	Slide 25: Using Larger Mappings – Challenges (1/3)
	Slide 26: Using Larger Mappings – Challenges (2/3)
	Slide 27: Using Larger Mappings – Challenges (3/3)
	Slide 28: Buffer Shuffling with Larger Mappings
	Slide 29: Buffer Shuffling with Larger Mappings
	Slide 30: Conclusion
	Slide 31: Backup Slides
	Slide 32: Bottlenecks
	Slide 33: Benefits of Using Larger Mappings
	Slide 34: Per-Page Allocation Cost
	Slide 35: IOMMU – Prior Works (1/2)
	Slide 36: IOMMU – Prior Works (2/2)
	Slide 37: Impact of Offloading Features – LRO*
	Slide 38: Other Analysis - Takeaways

