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Higher Bandwidth Demand
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5G/6G

Online Services

VM Hosting



Link Speeds Move Quickly to 1 Tbps 

• Inter-arrival time = 10x 
faster than memory 
access latency

• Communication 
between different 
system components 
could become a 
bottleneck

3* 7B preamble + 1B start-of-frame delimiter + 12B inter-frame gap = 20 B

Every 6.72 ns a new (64-B+20-B*) 
packet arrives at 100 Gbps 



What are the Communication 
Bottlenecks when Transferring 
Packets between NIC and CPU
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Data Path between NIC and CPU

• NIC access memory through the 
PCIe bus

• On some architectures, NIC can 
access Last Level Cache (LLC) 
to reduce latency
• DDIO* on Intel Xeon processors

• CPU later access the data

5

NIC

* Data Direct I/O Technology
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IOMMU*

• Without IOMMU, CPU provides 
the Physical Address (PA) of the 
buffers to the I/O device
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PA

* I/O Memory Management Unit

NIC
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IOMMU*

• With IOMMU, CPU provides I/O 
Virtual Address (IOVA) of the 
buffer to the I/O device
• Restrict DMAs to specific regions
• Provide I/O security
• Facilitate virtualization and 

backward compatibility
• IOMMU translates IOVA to PA on 

every I/O request
• Like MMU, a cache, called IOTLB**, 

is used to accelerate translations

7

IOVA

Translates 
IOVA to PA

NIC

IOMMU

* I/O Memory Management Unit ** I/O Translation Lookaside Buffer
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Bottlenecks – Bandwidth

• All components in the path must sustain 
line rate

• Short-term variability can be absorbed by 
on-NIC buffers

• PCIe bus
• PCIe 4.0 supports 16 Gbps per lane
• 16 lane → 256 Gbps
• PCIe 5.0 doubles the rate

• Memory interconnect or DDIO
• Memory
• IOMMU/IOTLB

8

NIC

IOMMU



Bottlenecks – Bandwidth Delay Product

• Each boundary has limited buffering
• Each transaction keeps buffer busy for some time (T) until it is completed
• Throughput ≪ buffer size / T

• PCIe can buffer around 32-64 KiB* per direction
• For PCIe MRd**, the read buffer (completion buffer) stays busy for the 

time between a request is sent and the data is received
• 64 KiB worth of completion buffers allow only 2.6 µs read latency at 200 Gbps

9* Ki (kibi) = 210 ** Memory Read
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Bottlenecks – Bandwidth Delay Product

• Each boundary has limited buffering
• Each transaction keeps buffer busy for some time (T) until it is completed
• Throughput ≪ buffer size / T

• PCIe can buffer around 32-64 KiB* per direction
• For PCIe MWr**, the write buffer (credits) stays busy from the time a 

request is  sent until the memory accepts the request
• 32 KiB worth of credits allow only 1.3 µs write latency at 200 Gbps

10* Ki (kibi) = 210 ** Memory Write
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In this talk, we focus on IOMMU/IOTLB



Modeling Performance Bottlenecks

• I/O subsystem has an upper bound for the number of outstanding 
DMA transactions

• This implicitly creates a throughput bottleneck (B)
• Ideally, B >> Data path rate (i.e., NIC and PCIe)
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𝐵 =
𝐵𝑢𝑓𝑓𝑒𝑟 𝑆𝑖𝑧𝑒

𝑇𝑀𝑒𝑚 + 𝑇𝐼𝑂𝑀𝑀𝑈

Time to complete an 
I/O transaction 
without IOMMU

Translation time



IOMMU Performance Overheads

1. IOVA Allocation/Deallocation

2. IOTLB Invalidations/Flushing

• Ensure higher degree of security

3. IOTLB Misses

• Traverse the I/O page table to resolve a miss, causing 
memory accesses and increases 𝑇𝐼𝑂𝑀𝑀𝑈

12

Addressed by previous works;
Typically show up as additional 

CPU load

Our focus



Factors Affecting IOTLB Misses

1. Size and management policy of IOTLB
• Hardware dependent
• Different vendors have different implementations (undocumented)

2. Memory request pattern
• Affected by system configurations (e.g., MTU size, packet rate, drop rate)
• Offloading features (e.g., LRO, TSO)
• Buffer management (e.g., Page Pool)
• Mapping size (4-KiB, 2-MiB, and 1-GiB pages)*

13* Ki (kibi) = 210, Mi (mebi) = 220, Gi (gibi) = 230



Impact of IOMMU on Throughput

14

Intel Xeon Gold 6346
(Ice Lake)

NVIDIA/Mellanox 
ConnectX-6

iPerf Client iPerf Server

200 Gbps

* It uses 32 threads, 384 TCP connections, 128 KiB messages, and MTU=1500 (MSS=MTU-52) – Linux kernel v5.15
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Impact of IOMMU on Throughput

Enabling IOMMU on an iPerf 
receiver causes a significant 
throughput drop

Despite having enough 
computation power, IOMMU 
restrains the system from 
achieving higher throughput

40% unused

Saturated



Measuring IOTLB Misses

• We report the number of IOTLB misses per unit of data (MiB)

• It makes it possible to compare the IOTLB misses across different 
rates and configurations

16



IOTLB Misses Per MiB at 200 Gbps
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We see a sudden jump in 
the number of IOTLB 
misses per MiB

Excessive IOTLB misses builds up a wall, 
causing throughput drop

IOTLB Wall



IOTLB Wall – 2-KiB Buffers

• MTU = 1500, MSS = 1448
• 1 MiB requires 220/ 1448 ≈ 725 RX buffers
• Each buffer uses half a 4-KiB page → ~362 x 4-KiB pages*
• Initially, the RX descriptors are contiguous

• Only accessing the first buffer causes an IOTLB miss
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Buffer 1
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Buffer 2
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* If the device driver does not allocate any other pages

Page 0

Page 1

Page 2



IOTLB Wall – 2-KiB Buffers

• Later, due to packet drops and slow buffer
recycling, 
• Buffers are shuffled, which causes an 

additional IOTLB miss

19
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IOTLB Wall – 2-KiB Buffers

20

362 + 80* Misses

* Due to slow recycling and having multiple queues

Misses suddenly increase

We think that the increase is due to 
having shuffled buffers 



IOTLB Wall – 4-KiB Buffers

• MTU = 3690, MSS = 3638
• 1 MiB requires 220/ 3638 ≈ 288 RX buffers → ~288 x 4-KiB pages

• Fewer IOTLB misses
(420 vs. 365)

• IOTLB wall happens at a 
higher rate (130 vs. 150)

21

A modest decrease in the number of IOTLB misses per MiB 
can shift the rate at which throughput becomes a bottleneck



Impact of Offloading Features – TSO*

• TSO segments messages on the NIC, which reduces the number 
of translations

22* TCP Segmentation Offload (TSO)

TSO reduces the number of IOTLB misses per MiB
and the throughput drop due to IOTLB wall



Impact of Packet Drops

Developed a kernel patch* that artificially drops packets in the 
Linux kernel network stack to induce TCP re-transmissions 

23

Split pages are shuffled by the packet drops and TCP 
re-transmission, causing more IOTLB misses 

* Luigi patch: https://lists.bufferbloat.net/pipermail/bloat/2021-October/016693.html

https://lists.bufferbloat.net/pipermail/bloat/2021-October/016693.html


How to Mitigate IOTLB Wall?

• Use larger mappings (e.g., 2-MiB and 1-GiB)

24

Using 2-MiB huge pages* recovers the throughput drop caused by IOMMU

* We modified Page Pool API to use 2-MiB pages and allocate 512 x 4-KiB pages when performing bulk allocation.



Using Larger Mappings – Challenges (1/3) 

• Allocation and CPU cost
• Allocating 512 x 4-KiB physically contiguous pages are more difficult
• Compaction (coalescing) 512 pages is significantly more expensive
• It may cause tremendous memory fragmentation in long-running systems

25



Using Larger Mappings – Challenges (2/3) 

• Memory stranding
• Possible to reserve a few GB of memory based on BDP* at boot time
• We noticed existing drivers continually allocate pages due to slow 

recycling, so it may be difficult to operate with a fixed-size page pool

26* Bandwidth Delay Product



Using Larger Mappings – Challenges (3/3) 

• Locality and buffer management
• It is much more difficult to ensure locality with larger mappings as they 

are split into smaller chunks (e.g., 512 x 4-KiB)
• More severe buffer shuffling

27



Buffer Shuffling with Larger Mappings

• Continual allocation
• No buffer recycling

• Using fixed-size (pre-allocated) pool
• 256 x 2-MiB huge pages
• 512 x 2-MiB huge pages

28



Buffer Shuffling with Larger Mappings

29

IOTLB misses increase significantly over time when using 
fixed-size pool due to buffer shuffling

Fixed-size pools run out of buffers due to slow recycling



Conclusion

• Shifting toward high link speeds could introduce new bottlenecks 
in the system

• We modeled these bottlenecks and characterized IOTLB wall at 
200 Gbps

• Supporting the upcoming 200/400-Gbps networking with larger 
IOTLB mappings demands fundamental changes in Linux kernel 
memory management and I/O management

30

github.com/aliireza/iommu-bench

https://github.com/aliireza/iommu-bench


Backup Slides



Bottlenecks

1. PCIe (PCIe-Bench [SIGCOMM’18])
2. DDIO (ddio-bench [ATC’20])
3. Memory bandwidth (Host 

Interconnect Congestion [HotNet’22])
4. IOMMU/IOTLB (DAMN [ASPLOS’18], 

iommu-bench [PeerJCS‘23])
These problems will continue to grow 
with higher bandwidth

32

1

23

NIC

IOMMU4



Benefits of Using Larger Mappings
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Per-Page Allocation Cost

34



IOMMU – Prior Works (1/2)

35

• Utilizing the IOMMU Scalably [ATC’15]
•  Introduces deferred IOTLB invalidation and then optimizes the 

implementation of dma_map() and dma_unmap() to minimize the locks 
and waiting time to allocate an IOVA. They introduce a cache for recently 
freed IOVA to avoid accessing the red-black tree holding pairwise-disjoint 
ranges of allocated virtual I/O page numbers.

• DAMN [ASPLOS’18]
• Present a memory allocator to provide both security and performance. It 

uses permanently mapped buffers for IOMMu to prevent performing extra 
map/unmap. It is similar to our solution, but it focuses on managing 4-KiB 
buffers and requires changes to the page data structure. 



IOMMU – Prior Works (2/2)

36

• rIOMMU [ASPLOS’15]
• Introduces a flat table to improve the performance of IOMMU, which is 

based on the characteristics of circular ring buffers. 

• There are more works that focus on DMA attacks (e.g., sub-4-KiB 
vulnerabilities) and mapping VM pages into the IOMMU hardware. 



Impact of Offloading Features – LRO* 

• LRO enables the NIC to assemble received contiguous packets 
into larger buffers

37* Large Receive Offload (LRO)

LRO reduces the number of IOTLB misses per MiB, but not 
enough to overcome the IOTLB wall in our testbed



Other Analysis - Takeaways

• AMD EPYC 74F3 (3G-Milan) vs. Intel Xeon Gold 6346 (Ice Lake)
• IOMMU imposes a lower overhead on AMD EPYC, but it cannot achieve 

line rate for MTUs smaller than 3000 bytes

• Intel E810 vs. NVIDIA/Mellanox ConnectX-6 at 100 Gbps
• NVIDIA/Mellanox results in a slightly smaller number of IOTLB misses
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