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Higher Bandwidth Demand
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Link Speeds Move Quickly to 1 Tbps

Every 6.72 ns a new (64-B+20-B*)

packet arrives at 100 Gbps
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What are the Communication
Bottlenecks when Transferring

Packets between NIC and CPU




Data Path between NIC and CPU

CPU Socket
* NIC access memory through the - HIIBOOO
PCle bus .% 2 @@@
* On some architectures, NIC can } S %%%
access Last Level Cache (LLC) | W S
to reduce latency (e
* DDIO* on Intel Xeon processors ML‘;‘(‘)‘W
* CPU later access the data

* Data Direct I/0O Technology



|IOMMU*

* Without IOMMU, CPU provides
the Physical Address (PA) of the
buffers to the |/O device
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|IOMMU*

CPU Socket

* With IOMMU, CPU provides |/0O
Virtual Address (IOVA) of the
buffer to the I/O device

* Restrict DMAs to specific regions
* Provide I/O security

 Facilitate virtualization and
backward compatibility Main

* |IOMMU translates IOVA to PA on
every |/O request //

* Like MMU, a cache, called IOTLB**,

is used to accelerate translations Translates
IOVA to PA
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Bottlenecks — Bandwidth

CPU Socket

* Allcomponents in the path must sustain
line rate

* Short-term variability can be absorbed by
on-NIC buffers

,M*ry Controller

* PCle bus
* PCle 4.0 supports 16 Gbps per lane Mai
* 16 lane > 256 Gbps Me:.,':ry

e PCle 5.0doubles the rate

e Memory interconnect or DDIO
* Memory
« [OMMU/IOTLB




Bottlenecks — Bandwidth Delay Product

* Each boundary has limited buffering

* Each transaction keeps buffer busy for some time (T) until it is completed
* Throughput < buffersize /T

* PCle can buffer around 32-64 KiB* per direction

* For PCle MRd**, the read buffer (completion buffer) stays busy for the
time between a request is sent and the data is received

* 64 KiB worth of completion buffers allow only 2.6 ps read latency at 200 Gbps

Host PCle

PCle
MRd

4 4 )

Memory
Subsystem

NIC

Data

. J

Read
Data

* Ki (kibi) =210 ** Memory Read



Bottlenecks — Bandwidth Delay Product

* Each boundary has limited buffering
* Each transaction keeps buffer busy for some time (T) until it is completed

* Throughput < buffersize /T
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In this talk, we focus on IOMMU/IOTLB
\_ J
PCI
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RiIe Data Subsystem
\_ J \_
Write Complete
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Modeling Performance Bottlenecks

* |/O subsystem has an upper bound for the number of outstanding
DMA transactions

* This implicitly creates a throughput bottleneck (B)
* |deally, B >> Data path rate (i.e., NIC and PCle)

1* Buffer Size

TM*_I' TIOMML*
I Time to complete an Translation time'

/0O transaction
without IOMMU
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|IOMMU Performance Overheads

——

1. IOVA Allocation/Deallocation
Addressed by previous works;

2. 10TLB Invalidations/Flushing — Typically Shé);vuulﬂjj additional
» Ensure higher degree of security

—

3. |IOTLB Misses
« Traverse the I/O page table to resolve a miss, causing

memory accesses and increqases Tiommu
Our focus J
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Factors Affecting IOTLB Misses

1. Size and management policy of IOTLB
* Hardware dependent
* Different vendors have different implementations (undocumented)

2. Memory request pattern

* Affected by system configurations (e.g., MTU size, packet rate, drop rate)
* Offloading features (e.g., LRO, TSO)

* Buffer management (e.g., Page Pool)
* Mapping size (4-KiB, 2-MiB, and 1-GiB pages)*

* Ki (kibi) = 219, Mi (mebi) = 220, Gi (gibi) = 230
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Impact of IOMMU on Throughput

Uittt O Lddits O

iPerf Client iIPerf Server
Intel Xeon Gold 6346 —g= NVIDIA/Mellanox
(Ice Lake) ConnectX-6

* |t uses 32 threads, 384 TCP connections, 128 KiB messages, and MTU=1500 (MSS=MTU-52) - Linux kernelv5.15
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Impact of IOMMU on Throughput

Throughput (Gbps)
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I Enabling IOMMU on an iPerf
receiver causes a significant
throughput drop

Despite having enough
computation power, OMMU
restrains the system from
achieving higher throughput
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Measuring IOTLB Misses

* We report the number of IOTLB misses per unit of data (MiB)

* [t makes it possible to compare the IOTLB misses across different
rates and configurations
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|OTLB Misses Per MiB at 200 Gbps
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|OTLB Wall - 2-KiB Buffers

* MTU =1500, MSS = 1448
* 1 MiB requires 220/ 1448 = 725 RX buffers

* Each buffer uses half a 4-KiB page > ~362 x 4-KiB pages*

* |nitially, the RX descriptors are contiguous
* Only accessing the first buffer causes an IOTLB miss

* |f the device driver does not allocate any other pages

Buffer O

Buffer 1

Buffer 2

Buffer 3

Buffer 4

Buffer 5

} Page O

- Page 1

- Page 2
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|OTLB Wall - 2-KiB Buffers

* Later, due to packet drops and slow buffer
recycling,

e Buffers are shuffled, which causes an
additional IOTLB miss

Buffer O

Buffer 4

Buffer 2

Buffer 1

Buffer 3

Buffer5
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|OTLB Wall - 2-KiB Buffers

Misses suddenly increase

Generator Rate (Gbps)

* Due to slow recycling and having multiple queues
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|OTLB Wall - 4-KiB Buffers

p
A modest decrease in the number of IOTLB misses per MiB

can shift the rate at which throughput becomes a bottleneck
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Impact of Offloading Features — TSO*

TSO reduces the number of IOTLB misses per MiB
and the throughput drop due to IOTLB wall
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Impact of Packet Drops

Split pages are shuffled by the packet drops and TCP
re-transmission, causing more |IOTLB misses

Avg. IOTLB Misses per Mi
N
O
S
I

MTU Size (Byte)

* Luigi patch: https://lists.bufferbloat.net/pipermail/bloat/2021-October/016693.html
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How to Mitigate |IOTLB Wall?

* Use larger mappings (e.g., 2-MiB and 1-GiB)

Using 2-MiB huge pages* recovers the throughput drop caused by IOMMU
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*We modified Page Pool API to use 2-MiB pages and allocate 512 x 4-KiB pages when performing bulk allocation.

|

| | | | | | | | | |
Maximum Achievable Rate IOMMU-OFF
i IOMMU-ON (2-MiB)
Z>psacacacacacaC)
IOMMU-ON (4-KiB)
] ] ] ] ] ] ] ] ] ]
0O 20 40 60 80 100 120 140 160 180 200

Generator Rate (Gbps)

24



Using Larger Mappings — Challenges (1/3)

 Allocation and CPU cost

* Allocating 512 x 4-KiB physically contiguous pages are more difficult
* Compaction (coalescing) 512 pages is significantly more expensive
* [t may cause tremendous memory fragmentation in long-running systems
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Using Larger Mappings — Challenges (2/3)

* Memory stranding
* Possible to reserve a few GB of memory based on BDP* at boot time

* We noticed existing drivers continually allocate pages due to slow
recycling, so it may be difficult to operate with a fixed-size page pool

* Bandwidth Delay Product
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Using Larger Mappings — Challenges (3/3)

* Locality and buffer management

* |tis much more difficult to ensure locality with larger mappings as they
are split into smaller chunks (e.g., 512 x 4-KiB)

* More severe buffer shuffling
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Buffer Shuffling with Larger Mappings

* Continual allocation
* No buffer recycling

* Using fixed-size (pre-allocated) pool
* 256 x 2-MiB huge pages
* 512 x 2-MiB huge pages
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Buffer Shuffling with Larger Mappings

|IOTLB misses increase significantly over time when using
fixed-size pool due to buffer shuffling
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Conclusion

* Shifting toward high link speeds could introduce new bottlenecks
In the system

* We modeled these bottlenecks and characterized IOTLB wall at
200 Gbps

* Supporting the upcoming 200/400-Gbps networking with larger
|IOTLB mappings demands fundamental changes in Linux kernel
memory management and I/0O management

O github.com/aliireza/iommu-bench
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Bottlenecks

1. PCle (PCle-Bench [SIGCOMM’18])
2. DDIO (ddio-bench [ATC’20]) _.%

3. Memory bandwidth (Host
Interconnect Congestion [HotNet’22]) |

4. |IOMMU/IOTLB (DAMN [ASPLOS’18],  wain
iommu-bench [PeerJCS 23]) Memory

These problems will continue to grow
with higher bandwidth
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Benefits of Usmg Larger Mappmgs
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Per-Page Allocation Cost

- Allocation with 2-MiB (512 x 4-KiB)
Allocation with 64 x 4-KiB

CDF
coooon
o ONA OO

o
O
[y

0.01 0.1 1 10 100

Per-Page Allocation Time (us)
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|OMMU - Prior Works (1/2)

* Utilizing the IOMMU Scalably [ATC’15]

* |Introduces deferred IOTLB invalidation and then optimizes the
implementation of dma_map() and dma_unmap() to minimize the locks
and waiting time to allocate an IOVA. They introduce a cache for recently
freed IOVA to avoid accessing the red-black tree holding pairwise-disjoint
ranges of allocated virtual I/O page numbers.

* DAMN [ASPLOS’18]

* Present a memory allocator to provide both security and performance. It
uses permanently mapped buffers for IOMMu to prevent performing extra
map/unmap. It is similar to our solution, but it focuses on managing 4-KiB
buffers and requires changes to the page data structure.
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|OMMU - Prior Works (2/2)

* IOMMU [ASPLOS’15]

* Introduces a flat table to improve the performance of IOMMU, which is
based on the characteristics of circular ring buffers.

* There are more works that focus on DMA attacks (e.g., sub-4-KiB
vulnerabilities) and mapping VM pages into the IOMMU hardware.
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Impact of Offloading Features — LRO*

LRO reduces the number of IOTLB misses per MiB, but not
enough to overcome the IOTLB wall in our testbed
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Other Analysis - Takeaways

* AMD EPYC 74F3 (3G-Milan) vs. Intel Xeon Gold 6346 (Ice Lake)

* IOMMU imposes a lower overhead on AMD EPYC, but it cannot achieve
line rate for MTUs smaller than 3000 bytes

* Intel E810 vs. NVIDIA/Mellanox ConnectX-6 at 100 Gbps

* NVIDIA/Mellanox results in a slightly smaller number of IOTLB misses
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