
Characterizing IOTLB Wall for Multi-
100-Gbps Linux-based Networking

Alireza Farshin (NVIDIA)* and Luigi Rizzo (Google)

* Work was done at KTH Royal Institute of Technology as part of Google PhD Fellowship Netdev 0x18

IOTLB Wall

Higher Bandwidth Demand

2

AI

Industrial Digitalization

VR & AR

5G/6G

Online Services

VM Hosting

Link Speeds Move Quickly to 1 Tbps

• Inter-arrival time = 10x
faster than memory
access latency

• Communication
between different
system components
could become a
bottleneck

3* 7B preamble + 1B start-of-frame delimiter + 12B inter-frame gap = 20 B

Every 6.72 ns a new (64-B+20-B*)
packet arrives at 100 Gbps

What are the Communication
Bottlenecks when Transferring
Packets between NIC and CPU

4

NIC CPU

CPU Socket

PCIe

LLC

C C C C

C C C C

C C C C

C C C C

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

Data Path between NIC and CPU

• NIC access memory through the
PCIe bus

• On some architectures, NIC can
access Last Level Cache (LLC)
to reduce latency
• DDIO* on Intel Xeon processors

• CPU later access the data

5

NIC

* Data Direct I/O Technology

CPU Socket

PCIe

LLC

C C C C

C C C C

C C C C

C C C C

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

IOMMU*

• Without IOMMU, CPU provides
the Physical Address (PA) of the
buffers to the I/O device

6

PA

* I/O Memory Management Unit

NIC

CPU Socket

PCIe

LLC

C C C C

C C C C

C C C C

C C C C

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

IOMMU*

• With IOMMU, CPU provides I/O
Virtual Address (IOVA) of the
buffer to the I/O device
• Restrict DMAs to specific regions
• Provide I/O security
• Facilitate virtualization and

backward compatibility
• IOMMU translates IOVA to PA on

every I/O request
• Like MMU, a cache, called IOTLB**,

is used to accelerate translations

7

IOVA

Translates
IOVA to PA

NIC

IOMMU

* I/O Memory Management Unit ** I/O Translation Lookaside Buffer

CPU Socket

PCIe

LLC

C C C C

C C C C

C C C C

C C C C

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r

Bottlenecks – Bandwidth

• All components in the path must sustain
line rate

• Short-term variability can be absorbed by
on-NIC buffers

• PCIe bus
• PCIe 4.0 supports 16 Gbps per lane
• 16 lane → 256 Gbps
• PCIe 5.0 doubles the rate

• Memory interconnect or DDIO
• Memory
• IOMMU/IOTLB

8

NIC

IOMMU

Bottlenecks – Bandwidth Delay Product

• Each boundary has limited buffering
• Each transaction keeps buffer busy for some time (T) until it is completed
• Throughput ≪ buffer size / T

• PCIe can buffer around 32-64 KiB* per direction
• For PCIe MRd**, the read buffer (completion buffer) stays busy for the

time between a request is sent and the data is received
• 64 KiB worth of completion buffers allow only 2.6 µs read latency at 200 Gbps

9* Ki (kibi) = 210 ** Memory Read

NIC

Host PCIe Memory
SubsystemCompletion

Buffer
Data

Read
Data

PCIe
MRd

Bottlenecks – Bandwidth Delay Product

• Each boundary has limited buffering
• Each transaction keeps buffer busy for some time (T) until it is completed
• Throughput ≪ buffer size / T

• PCIe can buffer around 32-64 KiB* per direction
• For PCIe MWr**, the write buffer (credits) stays busy from the time a

request is sent until the memory accepts the request
• 32 KiB worth of credits allow only 1.3 µs write latency at 200 Gbps

10* Ki (kibi) = 210 ** Memory Write

NIC

Host PCIe
Memory

Subsystem

Write Complete
(Releases Credits)

PCIe
MWr

Write Buffer
(Credits)

Data

In this talk, we focus on IOMMU/IOTLB

Modeling Performance Bottlenecks

• I/O subsystem has an upper bound for the number of outstanding
DMA transactions

• This implicitly creates a throughput bottleneck (B)
• Ideally, B >> Data path rate (i.e., NIC and PCIe)

11

𝐵 =
𝐵𝑢𝑓𝑓𝑒𝑟 𝑆𝑖𝑧𝑒

𝑇𝑀𝑒𝑚 + 𝑇𝐼𝑂𝑀𝑀𝑈

Time to complete an
I/O transaction
without IOMMU

Translation time

IOMMU Performance Overheads

1. IOVA Allocation/Deallocation

2. IOTLB Invalidations/Flushing

• Ensure higher degree of security

3. IOTLB Misses

• Traverse the I/O page table to resolve a miss, causing
memory accesses and increases 𝑇𝐼𝑂𝑀𝑀𝑈

12

Addressed by previous works;
Typically show up as additional

CPU load

Our focus

Factors Affecting IOTLB Misses

1. Size and management policy of IOTLB
• Hardware dependent
• Different vendors have different implementations (undocumented)

2. Memory request pattern
• Affected by system configurations (e.g., MTU size, packet rate, drop rate)
• Offloading features (e.g., LRO, TSO)
• Buffer management (e.g., Page Pool)
• Mapping size (4-KiB, 2-MiB, and 1-GiB pages)*

13* Ki (kibi) = 210, Mi (mebi) = 220, Gi (gibi) = 230

Impact of IOMMU on Throughput

14

Intel Xeon Gold 6346
(Ice Lake)

NVIDIA/Mellanox
ConnectX-6

iPerf Client iPerf Server

200 Gbps

* It uses 32 threads, 384 TCP connections, 128 KiB messages, and MTU=1500 (MSS=MTU-52) – Linux kernel v5.15

15

Impact of IOMMU on Throughput

Enabling IOMMU on an iPerf
receiver causes a significant
throughput drop

Despite having enough
computation power, IOMMU
restrains the system from
achieving higher throughput

40% unused

Saturated

Measuring IOTLB Misses

• We report the number of IOTLB misses per unit of data (MiB)

• It makes it possible to compare the IOTLB misses across different
rates and configurations

16

IOTLB Misses Per MiB at 200 Gbps

17

We see a sudden jump in
the number of IOTLB
misses per MiB

Excessive IOTLB misses builds up a wall,
causing throughput drop

IOTLB Wall

IOTLB Wall – 2-KiB Buffers

• MTU = 1500, MSS = 1448
• 1 MiB requires 220/ 1448 ≈ 725 RX buffers
• Each buffer uses half a 4-KiB page → ~362 x 4-KiB pages*
• Initially, the RX descriptors are contiguous

• Only accessing the first buffer causes an IOTLB miss

18

Buffer 1

Buffer 0

Buffer 2

Buffer 3

Buffer 4

Buffer 5

* If the device driver does not allocate any other pages

Page 0

Page 1

Page 2

IOTLB Wall – 2-KiB Buffers

• Later, due to packet drops and slow buffer
recycling,
• Buffers are shuffled, which causes an

additional IOTLB miss

19

Buffer 1

Buffer 0

Buffer 2

Buffer 3

Buffer 4

Buffer 5

IOTLB Wall – 2-KiB Buffers

20

362 + 80* Misses

* Due to slow recycling and having multiple queues

Misses suddenly increase

We think that the increase is due to
having shuffled buffers

IOTLB Wall – 4-KiB Buffers

• MTU = 3690, MSS = 3638
• 1 MiB requires 220/ 3638 ≈ 288 RX buffers → ~288 x 4-KiB pages

• Fewer IOTLB misses
(420 vs. 365)

• IOTLB wall happens at a
higher rate (130 vs. 150)

21

A modest decrease in the number of IOTLB misses per MiB
can shift the rate at which throughput becomes a bottleneck

Impact of Offloading Features – TSO*

• TSO segments messages on the NIC, which reduces the number
of translations

22* TCP Segmentation Offload (TSO)

TSO reduces the number of IOTLB misses per MiB
and the throughput drop due to IOTLB wall

Impact of Packet Drops

Developed a kernel patch* that artificially drops packets in the
Linux kernel network stack to induce TCP re-transmissions

23

Split pages are shuffled by the packet drops and TCP
re-transmission, causing more IOTLB misses

* Luigi patch: https://lists.bufferbloat.net/pipermail/bloat/2021-October/016693.html

https://lists.bufferbloat.net/pipermail/bloat/2021-October/016693.html

How to Mitigate IOTLB Wall?

• Use larger mappings (e.g., 2-MiB and 1-GiB)

24

Using 2-MiB huge pages* recovers the throughput drop caused by IOMMU

* We modified Page Pool API to use 2-MiB pages and allocate 512 x 4-KiB pages when performing bulk allocation.

Using Larger Mappings – Challenges (1/3)

• Allocation and CPU cost
• Allocating 512 x 4-KiB physically contiguous pages are more difficult
• Compaction (coalescing) 512 pages is significantly more expensive
• It may cause tremendous memory fragmentation in long-running systems

25

Using Larger Mappings – Challenges (2/3)

• Memory stranding
• Possible to reserve a few GB of memory based on BDP* at boot time
• We noticed existing drivers continually allocate pages due to slow

recycling, so it may be difficult to operate with a fixed-size page pool

26* Bandwidth Delay Product

Using Larger Mappings – Challenges (3/3)

• Locality and buffer management
• It is much more difficult to ensure locality with larger mappings as they

are split into smaller chunks (e.g., 512 x 4-KiB)
• More severe buffer shuffling

27

Buffer Shuffling with Larger Mappings

• Continual allocation
• No buffer recycling

• Using fixed-size (pre-allocated) pool
• 256 x 2-MiB huge pages
• 512 x 2-MiB huge pages

28

Buffer Shuffling with Larger Mappings

29

IOTLB misses increase significantly over time when using
fixed-size pool due to buffer shuffling

Fixed-size pools run out of buffers due to slow recycling

Conclusion

• Shifting toward high link speeds could introduce new bottlenecks
in the system

• We modeled these bottlenecks and characterized IOTLB wall at
200 Gbps

• Supporting the upcoming 200/400-Gbps networking with larger
IOTLB mappings demands fundamental changes in Linux kernel
memory management and I/O management

30

github.com/aliireza/iommu-bench

https://github.com/aliireza/iommu-bench

Backup Slides

Bottlenecks

1. PCIe (PCIe-Bench [SIGCOMM’18])
2. DDIO (ddio-bench [ATC’20])
3. Memory bandwidth (Host

Interconnect Congestion [HotNet’22])
4. IOMMU/IOTLB (DAMN [ASPLOS’18],

iommu-bench [PeerJCS‘23])
These problems will continue to grow
with higher bandwidth

32

1

23

NIC

IOMMU4

Benefits of Using Larger Mappings

33

Per-Page Allocation Cost

34

IOMMU – Prior Works (1/2)

35

• Utilizing the IOMMU Scalably [ATC’15]
• Introduces deferred IOTLB invalidation and then optimizes the

implementation of dma_map() and dma_unmap() to minimize the locks
and waiting time to allocate an IOVA. They introduce a cache for recently
freed IOVA to avoid accessing the red-black tree holding pairwise-disjoint
ranges of allocated virtual I/O page numbers.

• DAMN [ASPLOS’18]
• Present a memory allocator to provide both security and performance. It

uses permanently mapped buffers for IOMMu to prevent performing extra
map/unmap. It is similar to our solution, but it focuses on managing 4-KiB
buffers and requires changes to the page data structure.

IOMMU – Prior Works (2/2)

36

• rIOMMU [ASPLOS’15]
• Introduces a flat table to improve the performance of IOMMU, which is

based on the characteristics of circular ring buffers.

• There are more works that focus on DMA attacks (e.g., sub-4-KiB
vulnerabilities) and mapping VM pages into the IOMMU hardware.

Impact of Offloading Features – LRO*

• LRO enables the NIC to assemble received contiguous packets
into larger buffers

37* Large Receive Offload (LRO)

LRO reduces the number of IOTLB misses per MiB, but not
enough to overcome the IOTLB wall in our testbed

Other Analysis - Takeaways

• AMD EPYC 74F3 (3G-Milan) vs. Intel Xeon Gold 6346 (Ice Lake)
• IOMMU imposes a lower overhead on AMD EPYC, but it cannot achieve

line rate for MTUs smaller than 3000 bytes

• Intel E810 vs. NVIDIA/Mellanox ConnectX-6 at 100 Gbps
• NVIDIA/Mellanox results in a slightly smaller number of IOTLB misses

38

	Slide 1: Characterizing IOTLB Wall for Multi-100-Gbps Linux-based Networking
	Slide 2: Higher Bandwidth Demand
	Slide 3: Link Speeds Move Quickly to 1 Tbps
	Slide 4: What are the Communication Bottlenecks when Transferring Packets between NIC and CPU
	Slide 5: Data Path between NIC and CPU
	Slide 6: IOMMU*
	Slide 7: IOMMU*
	Slide 8: Bottlenecks – Bandwidth
	Slide 9: Bottlenecks – Bandwidth Delay Product
	Slide 10: Bottlenecks – Bandwidth Delay Product
	Slide 11: Modeling Performance Bottlenecks
	Slide 12: IOMMU Performance Overheads
	Slide 13: Factors Affecting IOTLB Misses
	Slide 14: Impact of IOMMU on Throughput
	Slide 15: Impact of IOMMU on Throughput
	Slide 16: Measuring IOTLB Misses
	Slide 17: IOTLB Misses Per MiB at 200 Gbps
	Slide 18: IOTLB Wall – 2-KiB Buffers
	Slide 19: IOTLB Wall – 2-KiB Buffers
	Slide 20: IOTLB Wall – 2-KiB Buffers
	Slide 21: IOTLB Wall – 4-KiB Buffers
	Slide 22: Impact of Offloading Features – TSO*
	Slide 23: Impact of Packet Drops
	Slide 24: How to Mitigate IOTLB Wall?
	Slide 25: Using Larger Mappings – Challenges (1/3)
	Slide 26: Using Larger Mappings – Challenges (2/3)
	Slide 27: Using Larger Mappings – Challenges (3/3)
	Slide 28: Buffer Shuffling with Larger Mappings
	Slide 29: Buffer Shuffling with Larger Mappings
	Slide 30: Conclusion
	Slide 31: Backup Slides
	Slide 32: Bottlenecks
	Slide 33: Benefits of Using Larger Mappings
	Slide 34: Per-Page Allocation Cost
	Slide 35: IOMMU – Prior Works (1/2)
	Slide 36: IOMMU – Prior Works (2/2)
	Slide 37: Impact of Offloading Features – LRO*
	Slide 38: Other Analysis - Takeaways

