
Tailoring eBPF maps
for DDoS protection

Ivan Koveshnikov

How are we
using eBPF?
• Infrastructure as a service, middleware

• Different customers to protect, resources spawned dynamically.
Different areas of networking: gaming, hosting, DNS, etc.

• Resource isolation

• Long and flexible eBPF pipelines

• Deep packet inspection, e.g. with regular expressions
(Netdev 0x16 Github)

• Runtime configuration and code updates
(Netdev 0x17)

• Asynchronous traffic loads, ingress >> egress

• Unidirectional and bidirectional traffic analysis

https://netdevconf.info/0x16/sessions/talk/when-regular-expressions-meet-xdp.html
https://github.com/G-Core/linux-regex-module
https://netdevconf.info/0x17/sessions/talk/is-scaling-ebpf-easy-yet-a-small-step-to-one-server-but-giant-leap-to-distributed-network.html

What makes DDoS protection different?

• Low tolerance to legitimate traffic drop, but can be increased
under attacks.

• Acceptable level of garbage traffic leaks may greatly vary
between services.

• Filtering is not enough. Active querying, caching, connection
stealing—multiple methods need to be combined.

• Raging spikes! Not only about working efficiently, but about
breaking expectedly, predictably, and efficiently.

01

Rate limiters

Surviving traffic
spikes
Control-plane DDoS:

• Userspace companion app overloads by events notifications via
ring buffers or perf events

Data-plane operation jams:

• State allocation for statefull firewall

• ACL flow caching

NIC drivers

Rate limits
are everywhere
• bpf_map_lookup_elem() to get rate limit

configuration and state

↓

• Checking for allowed credits/timestamps

↓

• Desired bpf_map_update_elem() operation

All bpf_map_update_elem() calls are end up wrapped
into ratelimits

Example of rate limitinig for ACL flow
cache

Example: ACL flow
cache
Naïve implementation of ACL flow cache: 2 LPM
maps + 3 arrays.

LRU-hash for caching, populated from eBPF
side. Caches are unique for each CPU and allocated on
the closest NUMA node.

The rate limiter is implemented per-CPU.

Example of rate limitinig for ACL flow
cache

100k flows
No Caching

135.35
Mpps

28.36% bpf_prog_filter
19.08% bpf_prog_filter_acl
13.66% longest_prefix_match.isra.0
6.37% htab_map_hash
5.80% lookup_nulls_elem_raw

100K flows
With Caching

226.74
Mpps

40.12% bpf_prog_filter
10.77% lookup_nulls_elem_raw
8.93% htab_map_hash
5.86% ice_clean_rx_irq
5.07% memcmp

100K flows
With Caching
With Rate limit

223.64
Mpps

40.25% bpf_prog_filter
10.92% lookup_nulls_elem_raw
8.87% htab_map_hash
5.75% ice_clean_rx_irq
5.07% memcmp

10M flows
No Caching

128.02
Mpps

24.88% bpf_prog_filter
19.80% bpf_prog_filter_acl
13.76% longest_prefix_match.isra.0
12.10% lookup_nulls_elem_raw
5.57% htab_map_hash

10M flows
With Caching

66.45
Mpps

16.96% lookup_nulls_elem_raw
15.67% _raw_spin_lock
13.12% bpf_prog_filter
9.46% bpf_prog_filter_acl
6.43% __bpf_lru_list_rotate_inactive
6.39% longest_prefix_match.isra.0
4.35% htab_map_hash

100K flows
With Caching
With Rate limit

110.85
Mpps

23.65% lookup_nulls_elem_raw
22.52% bpf_prog_filter
15.68% bpf_prog_filter_acl
11.12% longest_prefix_match.isra.0
4.88% htab_map_hash

Proposal

• Not for performance improvements but an easier

way to create safe applications. DDoS-safety from

the box.

• Allowed only for maps with dynamically allocated

elements.

• Independent per-CPU calculations. Provide high

watermark against overloading, not a strict operation

limit.

• Insert operations can follow or bypass the rate limit.

• A single if() overhead if not needed.

Sketch drawing of how rate limiters should work: per cpu, fast, and
working only for the ebpf prog

Put the link to the proposal on Github on the bottom of the page —
no link

Create map:

struct bpf_map_create_opts opts = { 0 };

opts.sz = sizeof(opts);

opts.insert_rlim.limit = VALUE;

opts.insert_rlim.timeframe = FRAME;

bpf_map_create(BPF_MAP_TYPE_LRU_HASH, map_name,

sizeof(key), sizeof(value), MAX_ENTRIES, &opts);

OR

struct map_name_ratelimit {

__uint(limit, VALUE);

__uint(timeframe, FRAME);

}

struct {

__uint(type, BPF_MAP_TYPE_LRU_HASH);

__type(key, struct key);

__type(value, struct value);

__uint(max_entries, MAX_ENTRIES);

__type(insert_rlim, struct map_name_ratelimit);

} map_name SEC(".maps");

Insert at runtime:

bpf_map_update_elem(&map_name, &key, &value, BPF_ANY);
bpf_map_update_elem(&map_name, &key, &value, BPF_ANY |
BPF_NO_RATELIMIT);

02

TTL maps

Objects with
limited lifetime
Very native to data plane applications:

• Flow caches

• Stateful firewall tables

• Temporal block lists

• Cached responses

Access patterns:

• Renew on lookup

• Renew on update

TTL over LRU

• Each entry contains remaining lifetime. Atomic operations on

updating that lifetime are not required, as the time is always

pushed forward, some data races are allowed.

• Wrappers over bpf_map_lookup_elem() inside eBPF code check

and renew the lifetime on lookup. They return NULL to the caller

if the lifetime is expired.

• The kernel is not aware of the lifetime, it can remove entry at

any time or keep it forever. Lifetime depends only on the

insertion rate. An “expired” element can be accessed frequently

and saved from the garbage collector.

Limitations
of LRU maps
• Main usage: self-supporting hash table that doesn't require

a garbage collector.

• Space-based eviction. Reliable and fast.

• No guarantees how long an entry will be kept in the map.

• Shared index, so LRU maintain operations may slow down other
flows.

• BPF_F_NO_COMMON_LRU speed ups self-maintaining, but
space effectiveness breaks when only some CPUs work with that
map.

• Garbage collection from the userspace is not reliable, as the next
key may be invalidated at any time.

TTL hash in the
kernel
• A shared search index between all CPUs.

• The value type must inherit base value class,
which exposes remaining lifetime and hit rate to the caller. Both
the hit rate and the lifetime may be not 100% accurate to reduce
atomic pressure.

• The renew strategy is defined when the map is created.

• Shadow evictions: on the lookup, outdated entries
might be removed from the map.

• Explicit garbage collection can be done via (batch) lookup
operations from the userspace.

• When the map is full, all new insertions will be failed. Exposed
lifetime and hit rate allow smart evictions from the userspace.

Proposal

• New map types: TTL_HASH and PERCPU_TTL_HASH

• New map options: lifetime updates

• Lifetime stores coarse monotonic time since boot

• Runtime updates for 'lifetime' configuration is

mandatory - but not for the update strategy

Sketch drawing of how rate limiters should work: per cpu, fast, and
working only for the ebpf prog

Put the link to the proposal on Github on the bottom of the page —
no link

Struct bpf_ttl_hash_entry_header {

__u64 lifetime;

__u64 hitrate;

__u8 data[0];

}

Create map:

struct bpf_map_create_opts opts = { 0 };

opts.sz = sizeof(opts);

opts.entry_ttl.lifetime = VALUE;

opts.entry_ttl.update_on_lookup = true;

bpf_map_create(BPF_MAP_TYPE_TTL_HASH, map_name,

sizeof(key), sizeof(value), MAX_ENTRIES, &opts);

OR

struct map_name_entry_ttl {

__uint(lifetime, VALUE);

__uint(update_on_lookup, true);

}

struct {

__uint(type, BPF_MAP_TYPE_LRU_HASH);

__type(key, struct key);

__type(value, struct value);

__uint(max_entries, MAX_ENTRIES);

__type(entry_ttl, struct map_name_entry_ttl);

} map_name SEC(".maps");

Visibility of hitrate

• Smart garbage collection

• Drop oldest entries first

• Or drop entries with low hitrate - slowloris attacks

• Or drop entries with hig hitrate – spammers

03

Runtime option updates

Dynamic nature of map
options

• Map reuse on eBPF code update

• Reaction to traffic overloads

Proposal

• bpf_obj_get_info_by_fd() gives read access to all

the map options already

• Only a few options can reasonably get updates at the

runtime

• Setsockopt(2)-like approach is nice to have for rate

limit and lifetime updates

• Problems: BTF information is not dynamic

Sketch drawing of how rate limiters should work: per cpu, fast, and
working only for the ebpf prog

Put the link to the proposal on Github on the bottom of the page —
no link

bpf_map_option_set(int map_fd, int option,

size_t size, void *option)

Example:

struct bpf_map_opt_insert_rlim lim =

 {.limit = VALUE, .timeframe = FRAME};

bpf_map_setopt(fd, BPF_MAP_OPT_INSERT_RLIM, &lim,

sizeof(lim));

Thank you!

gcore.com

https://gcore.com/

	Slide 1: Tailoring eBPF maps for DDoS protection
	Slide 2: How are we using eBPF?
	Slide 3: What makes DDoS protection different?
	Slide 4
	Slide 5: Surviving traffic spikes
	Slide 6: Rate limits are everywhere
	Slide 7: Example: ACL flow cache
	Slide 8: Proposal
	Slide 9
	Slide 10: Objects with limited lifetime
	Slide 11: TTL over LRU
	Slide 12: Limitations of LRU maps
	Slide 13: TTL hash in the kernel
	Slide 14: Proposal
	Slide 15: Visibility of hitrate
	Slide 16
	Slide 17: Dynamic nature of map options
	Slide 18: Proposal
	Slide 19: Thank you!

