
Flow-based tunneling for SR-IOV using switchdev API

Ilya Lesokhin, Haggai Eran, Or Gerlitz
Mellanox

Yokneam, Israel
ilyal@mellanox.com haggaie@mellanox.com ogerlitz@mellanox.com

Abstract

SR-IOV devices present improved performance for network
virtualization, but pose limitations today on the ability of the
hypervisor to manage the network. For instance, UDP and
IP tunnels that are commonly used on the cloud are not sup-
ported today with SR-IOV. Flow based approaches like Open
vSwitch and TC are common in managing virtual machine
traffic. Both technologies are not supported with today’s SR-
IOV Linux driver model, which only allows to program MAC
or MAC+VLAN based forwarding for virtual function traffic.
We present a design that facilitates SR-IOV performance while
maintaining flow-based management for both non-tunneled
and VXLAN tunneled flows and uses the switchdev framework
to program the SR-IOV eSwitch. Our prototype uses hardware
offloads for most traffic, and a software fallback for traffic we
cannot offload. We expose a representor netdev for each port
in the SR-IOV eSwitch, one per virtual function and another
for the uplink, to enable the management of these ports by the
kernel and also the send and receive packets through the soft-
ware fallback path. Our implementation currently uses open-
vswitch for managing flows. It should be possible to extend it
to other management schemes such as TC. A flow’s match and
actions are reflected to the underlying device using extended
switchdev APIs. For tunneling we also propagate information
about the tunnel FDB, and the kernel routing table and neigh-
bor table.

Keywords
SR-IOV, OVS, VXLAN, offload, switchdev, virtualization,
flows

Introduction
Traditional hypervisors expose emulated or para-virtual de-
vices to guest virtual machines and multiplexes the I/O re-
quests of the guests onto the real hardware. More recently,
there has been an effort to offload those tasks to I/O devices
themselves. SR-IOV is a specification by PCI-SIG that allows
a single physical device to expose multiple virtual devices.
Those virtual devices can be safely assigned to guest virtual
machine giving them direct access to the hardware. Using
hardware directly reduced the CPU load on the hypervisor
and usually results in better performance and lower latency.
Those benefits come at a price of management flexibility.
Software virtual switches allow implementing complex vir-
tual topologies connecting the virtual machines among them-

selves and to the data center. On Linux, complex per-packet
processing is possible with netfilter, TC as well as with Open
vSwitch. In contrast, SR-IOV embedded switches are limited
in its expressive power and flexibility, but this limitation is not
always due to hardware limitation. In some cases the soft-
ware model for controlling the SR-IOV switch simply does
not allow the configuration of anything more complex than
MAC/VLAN based forwarding. In this paper we try to get
the best of both worlds: the performance of SR-IOV with
the management flexibility of a software switch. We present
a richer model for controlling the SR-IOV embedded switch
for flow-based switching and tunneling. The model config-
ures the switch dynamically and supports fallback to soft-
ware in case the hardware is unable to offload all required
flows. We show how this model allows integration with Open
vSwitch, and describe how VXLAN tunneling can be imple-
mented in this system. Finally, we presents the challenges
and open questions we are facing.

SR-IOV flow steering
VF Representors
Each para-virtual device assigned to a guest virtual machine
has a TAP device associated with it on the hypervisor. Pack-
ets sent through the guests VNIC arrive to the TAP device and
packets sent through the TAP device arrive to VNIC. Such
TAP devices are connected to virtual switches on the hyper-
visor and the hypervisor can apply various policies on this
virtual switches to control VM traffic. In contrast, traditional
SRIOV setups give the VMs direct access the hardware, by-
passing the hypervisor. The NIC uses simple MAC+VLAN
based forwarding rules that were configured in advance by the
hypervisor. We extend the SRIOV setup with the concept of a
VF representor netdev per VF, as outlined in [4]. The VF rep-
resentor plays the same role as the TAP device in the VNIC
setup, as illustrated in Figure 1. A packet sent through the VF
representor arrives to the VF and a packet sent through the VF
arrives to its representor. The existing PF netdev represents
the uplink in this model. This configuration gives our SRIOV
setup the same management flexibility as the para-virtual or
emulated setup but it also removes all the performance ben-
efits of SRIOV as it forces all the traffic to go through the
hypervisor. We call the mode of operation the software path.

To get the best of both worlds, management and perfor-

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

Figure 1: VF representors makes the configuration of VFs
similar to the TAP interface

mance, we need to offload the management decisions to the
NIC and avoid the software path for most traffic. We stress
the importance of offloading most but not all the traffic. Of-
floading is not all or nothing affair and that we are allowed
to continue passing some of the traffic through the software
path. For example, when an ARP request is flooded to mul-
tiple tunnel, it requires the hardware to send the same packet
to the wire with different encapsulation headers, this is rather
difficult to do in hardware and offloading such cases is rather
pointless as this scenario is quite rare. In our model, we can
simply allow such packets to go through the software path.
While this model can be used with various virtual bridges, in
this paper we discuss the case where the Open vSwitch virtual
bridge is used.

Open vSwitch

Open vSwitch is a multilayer virtual switch used for VM
traffic management. OVS does flow-based forwarding. The
first packet of each flow is passed to a user space daemon
called vswitchd. The vswitchd daemon consults an OVSDB
database and a set of OpenFlow tables to decide how the
packet should be handled. Once the decision is made, a flow
is inserted into the OVS kernel data path so that future packets
from the same flow would be handled quickly without a con-
text switch to user space. In our work we focus on accelerat-
ing SR-IOV setups that use OVS for switching. Our solution
adds a hook in the OVS data path that calls switchdev on the
ingress port of new flows. In response to that call the device
driver of that port attempts to offload that flow the hardware.
We note that the ingress port of a flow is well defined be-
cause the OVS data path mandates a full match on the ingress
port. While it may be possible with some hardware to of-
fload OpenFlow tables directly, we found the format of the
OVS data path more suitable for our NICs, as it can be im-
plemented much more efficiently. Currently the OVS data
path kernel module will attempt to offload every new flow
it receives from user-space, but in the future it should also
be possible to allow user-space to prioritize flows and decide
which flows to offload.

Switchdev flow API
Offloading flows to the hardware require changes to the
switchdev API. There have been several alternatives for sim-
ilar APIs such as John Fastabends Flow API [1], and updates
to TC to expose a flow classifier and actions [5]. As we have
been focusing in our prototype on implementing flow offloads
for Open vSwitch, we added a primitive flow object to the set
of objects switchdev accepts.

Tunneling offload
Open vSwitch tunneling
The OVS data path has push VLAN and pop VLAN actions
but does not have similar actions for VXLAN or other tunnel-
ing protocols. Instead there is a special VPORT for each tun-
neling protocol. Encapsulation is represented as two actions.
The first action is set attribute which conveys generic tunnel
parameters such as destination IP and tunnel ID in a proto-
col agnostic way. The second action is an output action to a
special tunnel VPORT such as a VXLAN VPORT. The type
of the output VPORT determines the encapsulation protocol.
Similarly, there is no explicit decapsulation, instead forward-
ing a packet from a VXLAN VPORT to another VPORT im-
plies decapsulation. The user can match the encapsulation
protocol by matching the source VPORT and other tunneling
parameter are matched in a protocol agnostic way. We note
that the VXLAN VPORT does not have switchdev ops and
we cant ask it to offload flows coming through it. So instead
we had to use fib lookup() to find the real ingress device and
ask it to offload the flow. A Limitation of this approach is
that if the routing later changes the new egress device wont
be asked to offload the flow unless it is removed and later
reinserted into the OVS data path.

Open vSwitch tunneling
Due to the OVS representation of tunnels, a route lookup is
required in order to determine through which interface a tun-
neled flow should be received and through which interface an
encapsulated flow needs to be sent. Furthermore, the routing
may change while OVS data path rules remain unchanged.
This is not an issue when the tunneling is done by software
as the routing is done for each packet. But when such flows
are offloaded to hardware, the routing changes need to be re-
flected in the hardware. Our driver keeps track of tunneled
flow that it could offload under some routing configuration
and tracks routing changes using the already existing hooks
for layer 3 support:

i n t n e t d e v s w i t c h f i b i p v 4 a d d (u32 d s t ,
i n t d s t l e n , s t r u c t f i b i n f o ∗ f i ,
u8 t o s , u8 type , u32 n l f l a g s , u32 t b i d) ;

i n t n e t d e v s w i t c h f i b i p v 4 d e l (u32 d s t ,
i n t d s t l e n , s t r u c t f i b i n f o ∗ f i ,
u8 t o s , u8 type , u32 t b i d) ;

When our driver receives such an event through one of
these hooks, it goes over all tunneled flows and checks

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

whether they are affected by this change. For flows that need
encapsulation we use ip route output key() to see if the out-
put device is still our device and to update the source IP and
TTL that will be used in the encapsulation. For flows that
need decapsulation we use fib lookup() to see if that flow
is supposed to be received through our device. Since other
drivers may need this book keeping as well, and because we
need to keep flows even when they are not offloaded to any
device, it makes sense to put these data structure in a common
module, or in switchdev itself. Having a common module to
manage tunneled flow, would also help us with the issue of
finding the real ingress port of a flow that needs decapsula-
tion. Rather than doing a one-shot fib lookup() to find the
device when inserting the flow to the data path, the common
code would be able to try to offload the flow again to a differ-
ent device every time there is a routing change.

Reflect routing changes in OVS flows
We can avoid the difficulty of tracking routing changes by
modifying OVS slightly. If the OVS data path had a match
on the source netdev of incoming tunneled packets then a
packet arriving to the tunnel VPORT through a different net-
dev would cause a miss in the data path and give us a chance
to offload the new flow that would be inserted to handle the
new packet.

Layer 2 information
Another issue with offloading tunneled flow is that those
flows do not include layer 2 information. Consequently this
information may change while OVS data path remains un-
changed and the hardware need to be notified about those
changes. In order to do that we hooked the eSwitch driver
with a netevent notifier. We maintain a hash table that maps
neighbor table entries to encapsulation headers. Whenever
we receive a neighbor update we update the relevant encap-
sulation headers.

Challenges
Openstack security groups
Openstack currently uses Linux bridges with netfilter rules to
implement security groups. In such a setup each VF repre-
sentor is connected to a Linux bridge and that Linux bridge
is connected to OVS. As a result the OVS sees the traffic as
coming from the bridge, and not from a representor device.
With our current implementation such flows will not be of-
floaded. Even if we could identify the real source of the traf-
fic, we would have to offload all the netfilter rules to maintain
correctness. We plan to work without security groups in the
first stage. And we are hoping that in the future the security
groups will be implemented with OVN and that we will be
able to offload those rules.

Aging
One important challenge we havent tackled yet is the proper
aging of OVS flows and Linux neighbor table entries. When
the forwarding is done in software, OVS keeps a last-used
timestamp on each flow, and updates for every packet that is
forwarded. The vswitchd daemon iterates all data path flows

once in every given number of seconds, and checks for flows
whose last-used value is too far back in the past. Such flows
are retired from the data path. Since offloaded flows do not
have any of their packets forwarded by the data path mod-
ule, their last-used field is not up-to-date. To avoid remov-
ing them and re-adding them over and over again we plan to
have a hardware flow counter gather statistics on each flow.
Once in a while, the driver will read all the flows counters,
compare them with a previous read, and update the last-used
value. With tunneling, the Linux neighbor table also needs
to be updated to prevent the system from discarding neighbor
entries that are only being used by an offloaded flow.

MTU
Tunneling protocols impose restrictions on the maximum
packet size. The maximum size must account for the addi-
tional encapsulation headers. To facilitate the configuration
of the correct MTU in the VM, we propose reflecting the
MTU set to the representor in the VNIC the VF exposes to
the VM. The administrator could then set the desired MTU in
the hypervisor and thus forcing the VM to use that MTU for
all packets.

Related work
The switchdev API [4] is based on having representor net-
devs, and although the paper focuses on physical switches, it
also presents the SR-IOV case. We follow that model with our
VF representors and we hope our analogy to the TAP device
makes our use of the model clearer. Flow API [1] is a pro-
posed kernel and user-space API for hardware flow offloads.
It allows a netdev driver to expose its flow processing pipeline
as a set of tables and supported headers graph. Our design is
still in early stages so we havent given much taught to the of-
fload API but we will need to consider something along those
lines. Netronome Agilio [3] offloads Open vSwitch flows to a
network adaptor similarly to our work. Although a patch that
exposes the necessary OVS hooks has been sent upstream [2],
the rest of the work is not open source.

Conclusion
We have shown a design that allows keeping the best of both
worlds using SR-IOV for improved VM networking perfor-
mance, without giving up on the flexibility of using Open
vSwitch to define and manage the virtual network. Our sys-
tem supports offloading VXLAN tunneled flows that so far
has not been supported with SR-IOV. We hope this work fa-
cilitate discussion and bring flow offload support into the up-
stream Linux.

References
[1] Fastabend, J. 2015. A flow api for

linux hardware devices. http://people.
netfilter.org/pablo/netdev0.1/papers/
A-Flow-API-for-Linux-Hardware-Devices.
pdf.

[2] Horman, S. 2014. datapath: offload hooks. http://
lwn.net/Articles/615324/.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

http://people.netfilter.org/pablo/netdev0.1/papers/A-Flow-API-for-Linux-Hardware-Devices.pdf
http://people.netfilter.org/pablo/netdev0.1/papers/A-Flow-API-for-Linux-Hardware-Devices.pdf
http://people.netfilter.org/pablo/netdev0.1/papers/A-Flow-API-for-Linux-Hardware-Devices.pdf
http://people.netfilter.org/pablo/netdev0.1/papers/A-Flow-API-for-Linux-Hardware-Devices.pdf
http://lwn.net/Articles/615324/
http://lwn.net/Articles/615324/

[3] netronome15. Agilio ovs software architecture.
http://netronome.com/media/redactor_
files/WP_Agilio_SW.pdf.

[4] Prko, J. 2015a. Hardware switches - the
open-source approach. http://people.
netfilter.org/pablo/netdev0.1/papers/
Hardware-switches-the-open-source-approach.
pdf.

[5] Prko, J. 2015b. Implementing open
vswitch datapath using tc. http://people.
netfilter.org/pablo/netdev0.1/papers/
Implementing-Open-vSwitch-datapath-using-TC.
pdf.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

http://netronome.com/media/redactor_files/WP_Agilio_SW.pdf
http://netronome.com/media/redactor_files/WP_Agilio_SW.pdf
http://people.netfilter.org/pablo/netdev0.1/papers/Hardware-switches-the-open-source-approach.pdf
http://people.netfilter.org/pablo/netdev0.1/papers/Hardware-switches-the-open-source-approach.pdf
http://people.netfilter.org/pablo/netdev0.1/papers/Hardware-switches-the-open-source-approach.pdf
http://people.netfilter.org/pablo/netdev0.1/papers/Hardware-switches-the-open-source-approach.pdf
http://people.netfilter.org/pablo/netdev0.1/papers/Implementing-Open-vSwitch-datapath-using-TC.pdf
http://people.netfilter.org/pablo/netdev0.1/papers/Implementing-Open-vSwitch-datapath-using-TC.pdf
http://people.netfilter.org/pablo/netdev0.1/papers/Implementing-Open-vSwitch-datapath-using-TC.pdf
http://people.netfilter.org/pablo/netdev0.1/papers/Implementing-Open-vSwitch-datapath-using-TC.pdf

