
MACsec: Encryption for the wired LAN

Sabrina Dubroca
Networking Services Team, Red Hat

Zurich, Switzerland
sd@queasysnail.net

sdubroca@redhat.com

Abstract

MACsec is an IEEE standard for security in wired ethernet
LANs. MACsec offers authenticity and integrity, as well as
optional encryption of the layer 2 payload. As a layer 2 spec-
ification, it provides these guarantees for all traffic in a LAN,
including ARP or neighbour discovery, VLAN headers, or
LACP. MACsec can be used on its own, or be combined with
802.1X to provide authentication, secure key distribution, and
participant discovery. This paper gives an overview MAC-
sec and its architecture, describes the proposed implementa-
tion submitted for inclusion in the Linux kernel, presents some
use cases and configuration examples with iproute2, and lists
some future work both in the kernel and in userspace.

Keywords
MACsec, L2, encryption, security, virtual device

Introduction
MACsec is an IEEE standard [1] that defines a protocol pro-
viding security for wired ethernet LANs. MACsec offers two
protection modes: integrity only, or integrity with confiden-
tiality. In the first case, packets are transmitted in the clear but
all the other guarantees of MACsec (protection against tam-
pering, replay protection) are provided. In the second case,
MACsec uses authenticated encryption to protect the data.

MACsec uses GCM AES with 128 bit keys by default. This
cipher suite provides Authenticated Encryption with Addi-
tional Data (AEAD), which allows to authenticate and ensure
integrity-protection of an entire packet, including all its head-
ers. Part of the payload can be encrypted as neeeded, while
the headers necessary for delivery of the packet are transmit-
ted as cleartext (but under integrity protection). Furthermore,
it can also be used for integrity-only protection, by passing
the entire packet to the algorithm as additional data. An ex-
tension to the standard allows 256 bit keys with GCM AES
[3].

MACsec is designed to be used with the MKA extension to
802.1X (MACsec Key Agreement protocol) [2], which pro-
vides channel attribution and key distribution to the nodes,
but can also be used with static keys getting fed manually by
an administrator, for example using iproute2.

MACsec Architecture
In MACsec terminology, a “Security Entity” (SecY) is an in-
stance of the MACsec implementation within a node.

MACsec defines unidirectional “secure channels” (SC) that
allow transmission from one node to one or more others.
Communication on a channel is done over a succession of
“secure associations” (SA), each using a specific key. Secure
associations are identified by their “association number”, in
the range [0, 3].

Keys are assigned to individual secure associations. A 32-
bit packet number is associated with each secure association
and serves two purposes:

– As part of the Initialization Vector, to ensure that every
packet encrypted with the same key uses a different IV;

– Replay protection, the receiving host can check the packet
number of the incoming packet against its receive window.

When the packet number would wrap, the secure associa-
tion is retired. The administrator or a management tool should
set up a new secure association before this happens – by mon-
itoring the evolution of the packet number – to allow switch-
ing seamlessly between the old and new association. The
same association number can later be reused, after allocating
a new key for it.

Packet format
Figure 1 shows a typical packet transmitted over an ethernet
LAN.

Dest addr

Src addr

Ethertype

User data

· · ·

Figure 1: Unprotected frame

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

When a packet goes through a MACsec device, a SecTAG
header is prepended, the ethertype is changed to the MAC-
sec ethertype (0x88e5), and the ICV (Integrity Check Value)
computed using the cipher suite over the entire packet (in-
cluding the SecTAG itself, and the destination and source
MAC addresses) is finally appended. The ethertype of the
original packet is part of the protected payload, as shown in
figure 2.

Dest addr

Src addr

MACsec Ethertype

SecTAG

(User) Ethertype

Protected (user) data

· · ·

ICV

Figure 2: MACsec protected (unencrypted) frame

Optionally, when encryption is enabled, the source and
destination addresses, as well as the SecTAG, remain pro-
tected by the ICV (as part of the “additional data” passed to
the cipher suite), and the rest of the original packet – starting
from its original ethertype, and the IP headers and payload
for example – are encrypted.

Dest addr

Src addr

MACsec Ethertype

SecTAG

· · ·
Encrypted data

· · ·

ICV

Figure 3: Encrypted MACsec frame

SecTAG format The SecTAG (fig 4) is the additional
header that MACsec requires.

AN association number (SA identifier, 2 bits)

SL short length, non-zero for frame lengths under 64B

TCI tag control information (fig 5)

ES End Station1

SC SCI present
SCB Single Copy Broadcast1

E Encrypted payload
C Changed text

SCI secure channel identifier, 64 bits
• 48 bits “system identifier” (MAC address)
• 16 bits “port number”

Packet format with VLAN When using MACsec to pro-
tect a VLAN, the VLAN tag is part of the encrypted payload,
as shown on figure 6.

Packet handling
On transmit The SecTAG is first pushed at the start of the
packet. Then, the ICV is computed over the entire packet,
and the payload is optionally encrypted at the same time. The
ICV is then appended at the end of the packet, which is finally
passed down to the network.

On receive The format of the packet and SecTAG is first
checked. Then, if replay protection is enabled, a first check
of the packet number with the receive window is performed.2
The cryptographic signature is then verified, and the data is
decrypted. MACsec offers three different validation modes
for incoming packets:
– strict: all non-protected, invalid, or impossible to verify

(because there is no receive channel that matches the SCI
for the packet) frames are dropped

– check: these frames are counted as “invalid” and accepted3

– disabled: all incoming frames are accepted4

A second replay protection check is then performed. The
MACsec-specific parts of the packet (ICV, SecTAG) are then
stripped, and the packet is finally passed up to the network
stack for processing.

Implementation in the Linux kernel
A SecY appears as a (virtual) network device linked to a par-
ent device, similarly to macvlan devices. The parent device
sees only the raw packets, ie the MACsec-protected pack-
ets for all its slave MACsec devices, as well as all the non-
protected traffic (for example, 802.1X). This design is a good

1The ES and SCB bits are described in the standard[1] and will
not be mentionned in this paper.

2From a security point of view, this check is acceptable – even-
though the authenticity of the packet has not been verified at this
point – because we only drop the packet without providing any feed-
back to a potential attacker, thus they cannot infer any timing differ-
ences to guess the window. Additionally, this check helps protect
against DoS attacks by avoiding the more expensive cryptographic
computation on packets that are obviously wrong.

3Encrypted frames cannot be accepted if there is no matching
channel, because there is no key to decrypt them. Additionally,
since MACsec allows administrators to choose the ICV length, only
frames using the default ICV length can be processed correctly with-
out a matching receive channel.

4Same conditions as for “check” apply

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MACsec EtherType TCI AN 0 SL

Packet Number

}
Mandatory

SCI

}
Optional

Figure 4: SecTAG format

0 1 2 3 4 5 6 7 8

V=0 ES SC SCB E C AN

Figure 5: SecTAG TCI and AN format

Eth Hdr SecTAG VLAN Hdr Data ICV

Figure 6: MACsec-protected VLAN frame

match for the uncontrolled and controlled port model defined
in the IEEE standards.

netdevice

rx handler data

secy list

macsec netdevice A

SecYA

TXSCA

macsec netdevice B

SecYB

TXSCB

netdev priv netdev priv

RXSC A1
+ SA

RXSC A2
+ SA

RXSC B1
+ SA

RXSC B2
+ SA

all RXSC for the master device

Figure 7: Data structures relationships

Incoming packet processing
Incoming packets on the parent devices are processed through
the rx handler infrastructure also used by bonding and
macvlan devices.

If the SCI is not explicitly present in the SecTAG, it is re-
constructed from the MAC address, using the default port
number (0x0001). We can then use this SCI to find the

matching receive secure channel among all the receive chan-
nels associated with the parent device. The packet – af-
ter validation and decryption, as described earlier – is then
passed up the networking stack, after setting skb->dev to
the net device for the SecY corresponding to the receive
secure channel we found.

Outgoing packet processing
Each transmit secure channel is associated with exactly
one MACsec net device (fig 7), through which pack-
ets to be protected using this channel will flow. In the
ndo start xmit method for the MACsec device, the
SecTAG is filled and the packet is protected (and option-
ally encrypted) using the currently active secure association
(encoding sa, a per-macsec-device configuration setting).
The resulting ICV is appended, and the packet is then passed
down to the underlying net device.

Configuration API
The configuration API for MACsec devices is split between
rtnetlink and genetlink.

rtnetlink is used to create and setup the net device and
the SecY attributes, using the IFLA MACSEC * attributes
with RTM NEWLINK or RTM SETLINK.

The genetlink part of the configuration API is used to set
up transmit secure association within a SecY, and the re-
ceive channels and associations on a MACsec device. The
genetlink API provides clean demultiplexing between differ-
ent commands.

Use cases
The default use case for MACsec is a standard LAN. With
a MACsec-capable switch, one could configure MACsec on
each host and the corresponding switch port. With a dumb
switch, one could enable MACsec on each host, so that the
entire LAN traffic is protected and the switch forwards the
MACsec-protected frames.

A host can also be configured with multiple secure chan-
nels, so that host H2 would not be able to decrypt the com-
munications between H1 and H4 (or H1 for communications
between H2 and H4. See figure 8. An example configuration
is given in listing 1).

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

switchH1

H2 H3

H4
macsec1

macsec2

Figure 8: LAN setup with multiple channels

Listing 1: LAN configuration
on H4: channel to H1
ip link add link eth0 macsec0 type macsec
ip macsec add macsec0 tx sa 0 on pn 100 \

key 1 $KEY_1
ip macsec add macsec0 rx address $H1_ADDR \

port 1
ip macsec add macsec0 rx address $H1_ADDR \

port 1 sa 0 pn 100 on key 0 $KEY_0

on H4: channel to H2
ip link add link eth0 macsec1 type macsec \

port 2
ip macsec add macsec1 tx sa 0 on pn 400 \

key 2 $KEY_2
ip macsec add macsec1 rx address $H2_ADDR \

port 1
ip macsec add macsec1 rx address $H2_ADDR \

port 1 sa 0 pn 100 on key 3 $KEY_3

on H1
ip link add link eth0 macsec0 type macsec
ip macsec add macsec0 tx sa 0 on pn 100 \

key 0 $KEY_0
ip macsec add macsec0 rx address $H4_ADDR \

port 1
ip macsec add macsec0 rx address $H4_ADDR \

port 1 sa 0 pn 100 on key 1 $KEY_1

on H2
ip link add link eth0 macsec0 type macsec
ip macsec add macsec0 tx sa 0 on pn 100 \

key 3 $KEY_3
ip macsec add macsec0 rx address $H4_ADDR \

port 2
ip macsec add macsec0 rx address $H4_ADDR \

port 2 sa 0 pn 400 on key 2 $KEY_2

Listing 2 shows examples of some additional iproute2
commands to configure a MACsec device. The first of these
commands enables changing the active transmit secure asso-
ciation, which needs to be done before the packet number for
the current association overflows. The second command al-
lows enabling encryption for packets transmitted on a MAC-
sec channel. Finally, the last of these commands enables re-
play protection, with a 128-packets window, so that incoming
packets on any receive secure channel for this device, with
a PN smaller than last packet seen - 128, will be
silently dropped.

H1 H2

bond bond

link1

macsec1

link2

macsec2

link3

macsec3

Figure 9: Example bond+MACsec setup

Listing 2: Some MACsec options
changing the current active TXSA
ip link set macsec0 type macsec encoding 2

enabling encryption
ip link set macsec0 type macsec encrypt on

enabling replay protection
ip link set macsec0 type macsec \

replay on window 128

Link aggregation and MACsec
MACsec can be used with link aggregation devices such as
bonding. Secure channels are configured independently on
each underlying link, and the MACsec devices are then en-
slaved in the bond – instead of adding the links themselves to
the bond (figure 9, configuration in listing 3).

Listing 3: bond configuration
modprobe bonding max_bonds=0
ip link add bond0 type bond [...]
ip link set bond0 up

Set up MACsec on each bonded link
ip link add link eth0 macsec0 type macsec ...
setup SA and RX on macsec0 like before
ip link add link eth1 macsec1 type macsec ...
setup SA and RX on macsec1 like before

Add the MACsec devices to the bond
ip link set macsec0 master bond0
ip link set macsec1 master bond0

MACsec over VXLAN
MACsec only needs an ethernet header, so we can configure
MACsec over VXLAN links, as described in figure 10 (see
also listing 4).

Listing 4: MACsec over VXLAN configuration
ip link add link type vxlan\

id 10 group 239.0.0.10 ttl 5 dev eth0
ip link add link vxlan0 macsec0 type macsec

setup SA and RX on macsec0 like before

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

underlay networkvswitch vswitchHA1

HA2

HB1

HA3

HB2

HB3
VXLAN2

VXLAN1macsec1

Figure 10: Example VXLAN+MACsec setup

Future work
In the kernel
In the current implementation of MACsec, some optional fea-
tures defined in the IEEE standards are not yet supported:

– confidentiality offset: the first 30 bytes of the packet are
only integrity protected. Currently, we can either encrypt
the entire payload, or leave it completely in the clear. This
would allow for example to transmit the IP header as clear-
text through the network.

– additional ciphersuite: GCM-AES-256, as defined in [3].

Additionally, some Intel ixgbe-based NICs have hardware
support for MACsec, which would allow to enable a sin-
gle Secure Channel to transmit at the full line rate of these
NICs. This would be required for performance-sensitive ap-
plications.

The current performance of MACsec is quite limited, and
future improvements could allow better throughput.

In userspace
The only configuration tool currently provided is iproute2,
with support only for static configuration of channels, associ-
ations, and keys. Future work would enable configuration of
MACsec via other tools such as NetworkManager.
wpa supplicant already has MACsec Key Agreement

(MKA) support [4][5][6], but there is at the moment no driver
to configure the kernel over netlink.

References
[1] IEEE. 2006. IEEE standard for local and metropolitan

area networks - media access control (mac) security. IEEE
Std. 802.1AE-2006.

[2] IEEE. 2010. IEEE standard for local and metropolitan
area networks - port-based network access control. IEEE
Std. 802.1X-2010.

[3] IEEE. 2011. IEEE standard for local and metropoli-
tan area networks - media access control (mac) security,
ammendment 1: Galois counter mode-advanced encryp-
tion standard-256 (gcm-aes-256) cipher suite. IEEE Std.
802.1AEbn-2011.

[4] Wang, H. 2014a. MACsec: Add drivers ops. hostap com-
mit 7baec808efb5 http://w1.fi/cgit/hostap/
commit/?id=7baec808efb5.

[5] Wang, H. 2014b. MACsec: Add PAE implementation.
hostap commit 887d9d01abc7 http://w1.fi/cgit/
hostap/commit/?id=887d9d01abc7.

[6] Wang, H. 2014c. MACsec: wpa supplicant integration.
hostap commit dd10abccc86d http://w1.fi/cgit/
hostap/commit/?id=dd10abccc86d.

Proceedings of netdev 1.1, Feb 10-12, 2016, Seville, Spain

http://w1.fi/cgit/hostap/commit/?id=7baec808efb5
http://w1.fi/cgit/hostap/commit/?id=7baec808efb5
http://w1.fi/cgit/hostap/commit/?id=887d9d01abc7
http://w1.fi/cgit/hostap/commit/?id=887d9d01abc7
http://w1.fi/cgit/hostap/commit/?id=dd10abccc86d
http://w1.fi/cgit/hostap/commit/?id=dd10abccc86d

