
v

Scaling network interfaces on Linux

David Ahern, Nikolay Aleksandrov, Roopa Prabhu
Cumulus Networks

Feb 10th, 2016

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Agenda

● Examples of interface stacking
● net_devices and kernel memory impacts
● Userspace impacts

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Bridging

● Ethernet bridges provide a means for hosts to
communicate at layer 2

● Bridge members can be individual physical interfaces,
bonds or logical interfaces that traverse an 802.1Q VLAN
trunk

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Network Interface Stacking (traditional bridge)

bond1

bond1.
100

bond0.
100

 br-100

bond0

swp1 swp2 swp3 swp4

macvlan Worst Case:

128 physical interfaces (swp1, …, swp128)

+ 64 bonds

+ 64 * 4094 (bonds * vlan interfaces)

+ 4094 bridges

+ 4094 macvlan interfaces (1 per bridge)

270,396 network interfaces

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Network Interface Stacking (vlan filtering bridge)

bond1

 br-100

bond0

swp1 swp2 swp3 swp4

macvlan

br.100

Worst Case:

128 physical interfaces (swp1, …, swp128)

 + 64 bonds

 + 1 bridge

 + 4094 vlan devices on bridge

 + 4094 macvlan interfaces

8,381 network interfaces

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Network Interface Stacking (tunnels: vxlan l2 gateway)

eth1

br

swp1.1

br.100

vxlan
1

vxlan
N

swp128.
4094

forwarding between vlan and vxlan

Worst Case:

128 physical interface (swp1, …, swp128)

+ 128 * 4094 (vlans per interface)

+ 1 bridge

+ 2000 vxlan netdevs (e.g.,)

526,045 network interfaces

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Network Interface Stacking (VRFs with VLANs)

swp1.1

Worst Case:

128 physical interfaces (swp1, …, swp128)

+ 128 * 4094 (vlans per interface)

+ 4094 VRFs

528,254 network interfaces

swp128.1

swp1 swp128

vrf-1

swp1.
4094

swp128.
4094

vrf-4094

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

netdev

▪ Basic modeling element in Linux networking stack
▪

▪ ethernet interfaces
▪ vlan sub-interfaces
▪ bridges
▪ bonds
▪ vxlans
▪ tunnels
▪ vrfs

all represented
as a netdev

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Memory Use per Network Interface

▪ Each 'ip link add' consumes at least 43k bytes

requested allocated

netdevice + hw address, queues 2,927 4,864

kobject + sysfs 14,321 14,568

IPv4 init 6,054 7,392

MPLS init 511 544

IPv6 init 12,637 16,576

Total 36,450 43,944

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Memory Use for Stacking Cases

Use case netdevs netdev memory
(MB)

private memory
(MB)

traditional bridge 270,396 11,354 361

vlan filtering bridge 8,381 352 17

vxlan gateway 526,045 22,089 5

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Options?

▪ Lightweight tunnels (LWT)
▪ No netdevice created for tunnel endpoints; metadata on route

entries
▪ L2 only device

▪ skip L3 initializations (IPv4 and IPv6)

▪ “Lightweight” netdevice
▪ drop the sysfs entries
▪ drop devconf (no sysctl entries) - “default” options are used

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Lightweight Tunnels (LWT)

▪ Eliminate tunnel netdevices using LWT and flow based
tunnels

▪ Attach tunnel attributes to routes instead of a tunnel
netdevice
○ VXLAN (single vxlan netdev vxlan0)

■ ip route add 40.1.1.1/32 encap vxlan id 10 dst 50.1.1.2 dev vxlan0

○ MPLS (no netdevices carrying mpls tunnel attributes)

■ ip route add 10.1.1.0/30 encap mpls 200 via inet 10.1.1.1 dev eth0

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Lightweight netdevice

▪ Memory per device drops from ~45k range to ~13k
▪ 1/3rd the memory consumption per interface

▪ Combine with L2 only
▪ Memory cost per net_device drops to 4,896 bytes

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Lightweight netdevice

▪ What’s the trade-off?
▪ no per-interface configuration (no /proc/sys/net entries)

▪ defaults need to work for lwt-devs
▪ no sysfs entries -- impacts tools expecting run time stats and

settings
▪ tools need to use rtnetlink interface

▪ L2-only: No AF_INET + AF_INET6

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

UserSpace

▪ Network interface managers
▪
▪ forwarding and routing protocols

▪ lldpd, bgp, ospf, stp

▪ Redundancy/High availability
▪ clagd/mlagd, keepalived

▪ monitoring and serviceability
▪ net-snmp

 All react to changes with network interfaces
cumulusnetworks.com 15

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Admin

▪ Each netdev adds between 1196 (eth0) and 1556 (bridge) bytes
○ stats, address family-specific data (e.g, devconf)

▪ more user-kernel switches to retrieve data
○ Lot of data dumped to user

▪ ip has display filters - applied to data returned by kernel

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netlink notification overload

▪ Kernel notifies user space of changes in
network interface attributes/network-
protocol-states

▪ At scale, user space is constantly stormed
with notifications

▪ Possible Solutions:
○ Reduce number of netdevices
○ more granular netlink notification

filters

Example: fdb local mac problem:
● vlan filtering bridge: 128 ports *

4094 vlans
● fdb size explosion: 524032 entries,

~36 MB of memory
● per-fdb entry notifications

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Options?

▪ Kernel side filters
▪ Reduce data pushed to userspace

▪ Which devices are collected:
▪ Option to return only devices enslaved to a given master device

• e.g., ip link show master br1
▪ Option to return only devices of a specific type

• e.g., ip link show type vrf

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Options?

▪ Reduce data per device
▪ Option to not send devconf - 696 bytes for IPv4 and IPv6
▪ Option to not send statistics - 284 bytes
▪ Combined stats + devconf are 980 of the 1200+ bytes

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Example

▪ 615 network interfaces
▪ ethernet interfaces, vlans, bonds, bridges, macvlans, vrfs

▪ ip link show
▪ regardless of filter (type, master, brief) requires 58 recvmsg calls,

pulls in 888,512 bytes

▪ with kernel side filtering
▪ ip link show type bond -- 7 recvmsg calls, 70,556 bytes
▪ ip link show type vrf -- 3 recvmsg calls, 3,716 bytes

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Network Interface configuration at scale

cumulusnetworks.com

▪ Mostly cookie-cutter interface
configurations. eg: replicate the interface
stack for all vlans

▪ flat files with large number of interfaces
is cumbersome to manage

▪ Shrink network interface configuration
specification: templatize

Example python mako template to
create bridges for vlan 1000 to 1100
in ifupdown2:

%for v in range(1000,1100):

auto br-${v}

iface br-${v} inet static

 bridge-ports glob swp1-6.${v}

 bridge-stp on

%endfor

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Questions

?
cumulusnetworks.com

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

CUMULUS, the Cumulus Logo, CUMULUS NETWORKS, and the Rocket Turtle Logo (the “Marks”) are trademarks and service marks of Cumulus Networks, Inc. in the U.S. and other
countries. You are not permitted to use the Marks without the prior written consent of Cumulus Networks. The registered trademark Linux® is used pursuant to a sublicense from LMI,
the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis. All other marks are used under fair use or license from their respective owners.

▪Thank You!

cumulusnetworks.com

Bringing the Linux Revolution to Networking

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

