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Agenda

● Examples of interface stacking
● net_devices and kernel memory impacts
● Userspace impacts
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Bridging

● Ethernet bridges provide a means for hosts to 
communicate at layer 2

● Bridge members can be individual physical interfaces, 
bonds or logical interfaces that traverse an 802.1Q VLAN  
trunk
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Network Interface Stacking (traditional bridge)
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macvlan Worst Case:

128 physical interfaces (swp1, …, swp128)

+ 64 bonds 

+ 64 * 4094 (bonds * vlan interfaces) 

+ 4094 bridges 

+ 4094 macvlan interfaces (1 per bridge)

270,396 network interfaces
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Network Interface Stacking (vlan filtering bridge)
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Worst Case:

128 physical interfaces (swp1, …, swp128)

 + 64 bonds

 + 1 bridge

 + 4094 vlan devices on bridge

 + 4094 macvlan interfaces

8,381 network interfaces
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Network Interface Stacking (tunnels: vxlan l2 gateway)
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forwarding between vlan and vxlan

Worst Case:

128 physical interface (swp1, …, swp128) 

+  128 * 4094 (vlans per interface)

+ 1 bridge

+ 2000 vxlan netdevs (e.g.,)

526,045 network interfaces
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Network Interface Stacking (VRFs with VLANs)

swp1.1
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128 physical interfaces (swp1, …, swp128) 

+ 128 * 4094 (vlans per interface)

+ 4094 VRFs

528,254 network interfaces
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netdev

▪ Basic modeling element in Linux networking stack
▪

▪ ethernet interfaces
▪ vlan sub-interfaces
▪ bridges
▪ bonds
▪ vxlans
▪ tunnels
▪ vrfs

all represented 
as a netdev
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Memory Use per Network Interface

▪ Each 'ip link add' consumes at least 43k bytes

requested allocated

netdevice + hw address, queues 2,927 4,864

kobject + sysfs 14,321 14,568

IPv4 init 6,054 7,392

MPLS init 511 544

IPv6 init 12,637 16,576

Total 36,450 43,944
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Memory Use for Stacking Cases

Use case netdevs netdev memory
(MB)

private memory
(MB)

traditional bridge 270,396 11,354 361

vlan filtering bridge 8,381 352 17

vxlan gateway 526,045 22,089 5
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Options?

▪ Lightweight tunnels (LWT)
▪ No netdevice created for tunnel endpoints; metadata on route 

entries
▪ L2 only device

▪ skip L3 initializations (IPv4 and IPv6)

▪ “Lightweight” netdevice
▪ drop the sysfs entries
▪ drop devconf (no sysctl entries) - “default” options are used
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Lightweight Tunnels (LWT)

▪ Eliminate tunnel netdevices using LWT and flow based 
tunnels

▪ Attach tunnel attributes to routes instead of a tunnel 
netdevice
○ VXLAN  (single vxlan netdev vxlan0)

■ ip route add 40.1.1.1/32 encap vxlan id 10 dst 50.1.1.2 dev vxlan0
   

○ MPLS (no netdevices carrying mpls tunnel attributes)

■ ip route add 10.1.1.0/30 encap mpls 200 via inet 10.1.1.1 dev eth0     
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Lightweight netdevice

▪ Memory per device drops from ~45k range to ~13k
▪ 1/3rd the memory consumption per interface

▪ Combine with L2 only
▪ Memory cost per net_device drops to 4,896 bytes
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Lightweight netdevice

▪ What’s the trade-off?
▪ no per-interface configuration (no /proc/sys/net entries)

▪ defaults need to work for lwt-devs
▪ no sysfs entries -- impacts tools expecting run time stats and 

settings
▪ tools need to use rtnetlink interface

▪ L2-only: No AF_INET + AF_INET6
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UserSpace

▪ Network interface managers
▪
▪ forwarding and routing protocols

▪ lldpd, bgp, ospf, stp

▪ Redundancy/High availability
▪ clagd/mlagd, keepalived

▪ monitoring and serviceability
▪ net-snmp

   All react to changes with network interfaces
cumulusnetworks.com 15
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Admin

▪ Each netdev adds between 1196 (eth0) and 1556 (bridge) bytes
○ stats, address family-specific data (e.g, devconf)

▪ more user-kernel switches to retrieve data
○ Lot of data dumped to user

▪ ip has display filters - applied to data returned by kernel
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Netlink notification overload

▪ Kernel notifies user space of changes in 
network interface attributes/network-
protocol-states

▪ At  scale, user space is constantly stormed 
with notifications

▪ Possible Solutions: 
○ Reduce number of netdevices
○ more granular netlink notification 

filters

Example: fdb local mac problem:
● vlan filtering bridge: 128 ports  * 

4094 vlans
● fdb size explosion: 524032 entries, 

~36 MB of memory
● per-fdb entry notifications
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Options?

▪ Kernel side filters
▪ Reduce data pushed to userspace

▪ Which devices are collected: 
▪ Option to return only devices enslaved to a given master device

• e.g., ip link show master br1
▪ Option to return only devices of a specific type

• e.g., ip link show type vrf
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Options?

▪ Reduce data per device
▪ Option to not send devconf - 696 bytes for IPv4 and IPv6
▪ Option to not send statistics - 284 bytes
▪ Combined stats + devconf are 980 of the 1200+ bytes
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Example

▪ 615 network interfaces
▪ ethernet interfaces, vlans, bonds, bridges, macvlans, vrfs

▪ ip link show
▪ regardless of filter (type, master, brief) requires 58 recvmsg calls, 

pulls in 888,512 bytes

▪ with kernel side filtering
▪ ip link show type bond -- 7 recvmsg calls, 70,556 bytes
▪ ip link show type vrf  -- 3 recvmsg calls, 3,716 bytes
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Network Interface configuration at scale

cumulusnetworks.com  

▪ Mostly cookie-cutter interface 
configurations. eg: replicate the interface 
stack for all vlans

▪ flat files with large number of interfaces 
is cumbersome to manage

▪ Shrink network interface configuration 
specification:  templatize 

Example python mako template to 
create bridges for vlan 1000 to 1100 
in ifupdown2:

%for v in range(1000,1100):

auto br-${v}

iface br-${v} inet static

    bridge-ports glob swp1-6.${v}

    bridge-stp on

%endfor
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Questions

?
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▪Thank You!
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