VRF Tutorial

David Ahern — Cumulus Networks

Netdev 1.1, February 2016
Agenda

VRF Overview
Use Case: Management VRF
Use Case: VLANs and VRFs
Use Case: MPLS and VRFs
Other
Virtual Routing and Forwarding (VRF)

Multiple Routing Tables
- Network interfaces correlate to routing table

Linux Implementation
- VRF represented as an L3 Master netdevice
- Interfaces are enslaved to VRF device

Applications
- Bind sockets to VRF device or cmsg + oif

L3-only concept
- Impacts only IPv4 and IPv6 route lookups
Feature by Kernel Version

IPv4 support - v4.3
IPv6 support - v4.4
“VRF-global” sockets - v4.5

Need iproute2 version that correlates to kernel version
- Or just use top of tree
Advantages of a netdevice Model

- netfilter, tc rules on VRF device
- tcpdump / packet capture on VRF device
- IP on VRF device - VRF-local loopback
- Nesting of VRFs (L3) in a namespace (L1)
- Applications can use existing APIs
 - cmsg & oif, SO_BINDTODEVICE, IP_PKTINFO
- Existing framework for serviceability and debugging
 - e.g., list VRFs using ’ip link show type vrf’
Conceptual Basics

Create VRF device with table id
- `ip link add vrf-red type vrf table 123`

Setup FIB rules pointing to device
- `ip {-6} ru add pref 200 {i,o}if vrf-$name table $tbid`

Enslave interfaces
- `ip link set swp1 master vrf-red`

Bind socket to VRF device
- Connects socket to L3 domain

Send / receive packets
VRF Create

`vrf_create <name> table <id>` means:

- `ip link add vrf-`{name} type vrf table ``${tbid}`
- `echo "``${tbid}` vrf-`{name}"` > `/etc/iproute2/rt_tables.d/vrf-`{name}.conf`
- `ip ru add pref 200 oif vrf-`{name} table ``${tbid}`
- `ip ru add pref 200 iif vrf-`{name} table ``${tbid}`
- `ip -6 ru add pref 200 oif vrf-`{name} table ``${tbid}`
- `ip -6 ru add pref 200 iif vrf-`{name} table ``${tbid}`
- `ip route add table ``${tbid}` unreachable default`
- `ip -6 route add table ``${tbid}` unreachable default`
- `ip link set dev vrf-`{name} up`
Use Cases

Management VRF

VLANs and VRFs

MPLS and VRFs
Use Case: Management VRF

Separation of Management Traffic from Data Plane

Management Interface

- Table 252

Front Panel Ports

- Main Table
Use Case: Management VRF

Create VRF device
- vrf-create mgmt table 252

Enslave management interface
- ip link set dev eth0 master vrf-mgmt

List routes in management table
- ip route ls table vrf-mgmt
Use Case: Management VRF

Commands by default use main table == front panel ports
 - ping, traceroute, etc

Management apps
 - need to be told to use mgmt table
 - e.g, ping -I vrf-mgmt <ip>
 - SO_BINDTODEVICE, somark, LD_PRELOAD that sets device binding
 - l3mdev cgroup solves this problem more elegantly
Use Cases

Management VRF

VLANs and VRFs

MPLS and VRFs
VRF with VLANs

Hosts separated by VLANs

Shared networking infrastructure
Use Case: VRFs and VLANs

Demonstration using simplified deployment model

2 groups of hosts

- g1h{1-4} - isolated on VLAN 10
- g2h{1-4} - isolated on VLAN 20

4 switches

- hosts connect to switches s1 and s2
- routing provided by switches r1 and r2
 - VRF 10 and VRF 20

Live Demo
s1 config

VLAN 10 subinterfaces on swp1, swp2, swp5
bridge br1 with swp1.10, swp2.10 and gateway address for hosts g1h1, g1h2

VLAN 20 subinterfaces on swp3, swp4, swp6
bridge br2 with swp3.20, swp4.20 and gateway address for hosts g2h1, g2h2

swp5.10 and swp6.20 have addresses to route packets to r1 for respective vlans
r1 config
VLAN 10 subinterfaces on swp1, swp2
VLAN 20 subinterfaces on swp1, swp3
All VLAN interfaces have addresses for routing packets

r2 config is similar to r1
s2 config mirrors s1

```
+-----------------------------+
| 2.10                       |
| r2                         |
| VRF 10                      |
| 2                          |
| 3                          |
+-----------------------------+

10.10.2.0/28

+-----------------------------+
| 5                           |
| 6                           |
| s2                          |
| br1                         |
| 1.10                        |
| 2.10                        |
| 3.20                        |
| 4.20                        |
+-----------------------------+

+-----------------------------+
| g1h3                       |
| g1h4                       |
| g2h3                       |
| g2h4                       |
+-----------------------------+

10.1.2.3
10.1.2.4
10.2.2.3
10.2.2.4
```
Use Cases

Management VRF

VLANs and VRFs

MPLS and VRFs
VRF with MPLS

CA-E1

VRF-A

PE1

VRF-B

P

PE2

VRF-A

VRF-B

CA-E2

CB-E1

CB-E2

provider backbone
Use Case: VRFs and MPLS

Demonstration using simplified deployment model

2 customers with hosts separated by common pe1-p-pe2 backbone

- backbone uses MPLS

hosts connected to edge routers

Edge routers connected to provider edge

- VRFs at provider edge provide the separation
Live Demo
typical address assignment for hosts, cNhM

Edge switch is the default gateway
edge switches attached to
provider backbone at both ends

pe1 and pe2 are LERs. VRFs
separate customer traffic coming
into and out of PEs

p is an LSR
Customer hosts on the other side of the PE1-P-PE2 backbone
Inter-VRF Routing

Routing Between VRFs

Explicit route in a table

- `ip route add table vrf-red 1.1.1.0/24 dev eth2`
- `eth2` is in alternate VRF

Full lookup in VRF table

- `ip route add table vrf-red 1.1.1.0/24 dev vrf-green`
Link down on VRF device stops all routing in that VRF
 - Similar to a bridge and ports enslaved to it

Address on VRF device
 - VRF local loopback address

Overlapping Addresses
 - design allows same address/prefix in different VRF domains
Unleashing the Power of Open Networking

Thank You!