
On getting tc classifier fully programmable with cls bpf.

Daniel Borkmann
<daniel@iogearbox.net>

Noiro Networks / Cisco

netdev 1.1, Sevilla, February 12, 2016

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 1 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Background, history.

BPF origins as a generic, fast and ’safe’ solution to packet parsing

tcpdump → libpcap → compiler → bytecode → kernel interpreter

Intended as early drop point in AF PACKET kernel receive path

JIT’able for x86 64 since 2011, ppc, sparc, arm, arm64, s390, mips

BPF used today: networking, tracing, sandboxing

tcpdump -i any -d ip
(000) ldh [14]
(001) jeq #0x800 jt 2 jf 3
(002) ret #65535
(003) ret #0

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 2 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Classic BPF (cBPF) in a nutshell.

32 bit, available register: A, X, M[0-15], (pc)

A used for almost everything, X temporary register, M[] stack
Insn: 64 bit (u16:code, u8:jt, u8:jf, u32:k)

Insn classes: ld, ldx, st, stx, alu, jmp, ret, misc

Forward jumps, max 4096 instructions, statically verified in kernel

Linux-specific extensions overload ldb/ldh/ldw with k← off+x

bpf asm: 33 instructions, 11 addressing modes, 16 extensions

Input data/”context” (ctx), e.g. skb, seccomp data

Semantics of exit code defined by application

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 3 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Extended BPF (eBPF) as next step.

64 bit, 32 bit sub-registers, available register: R0-R10, stack, (pc)
Insn: 64 bit (u8:code, u8:dst reg, u8:src reg, s16:off, s32:imm)

New insns: dw ld/st, mov, alu64 + signed shift, endian, calls, xadd

Forward & backward* jumps, max 4096 instructions

Generic helper function concept, several kernel-provided helpers

Maps with arbitrary sharing (user space apps, between eBPF progs)

Tail call concept for eBPF programs, eBPF object pinning
LLVM eBPF backend: clang -O2 -target bpf -o foo.o foo.c

C → LLVM → ELF → tc → kernel (verification/JIT) → cls bpf (exec)

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 4 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eBPF, General remarks.

Stable ABI for user space, like the case with cBPF

Management via bpf(2) syscall through file descriptors

Points to kernel resource → eBPF map / program

No cBPF interpreter in kernel anymore, all eBPF!

Kernel performs internal cBPF to eBPF migration for cBPF users

JITs for eBPF: x86 64, s390, arm64 (remaining ones are still cBPF)

Various stages for in-kernel cBPF loader

Security (verifier, non-root restrictions, JIT hardening)

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 5 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eBPF and cls bpf.

cls bpf as cBPF-based classifier in 2013, eBPF support since 2015
Minimal fast-path, just calls into BPF PROG RUN()

Instance holds one or more BPF programs, 2 operation modes:
Calls into full tc action engine tcf exts exec() for e.g. act bpf

Direct-action (DA) fast-path for immediate return after BPF run

In DA, eBPF prog sets skb->tc classid, returns action code
Possible codes: ok, shot, stolen, redirect, unspec

tc frontend does all the setup work, just sends fd via netlink

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 6 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eBPF and cls bpf.
skb metadata:

Read/write: mark, priority, tc index, cb[5], tc classid
Read: len, pkt type, queue mapping, protocol, vlan *, ifindex, hash

Tunnel metadata:
Read/write: tunnel key for IPv4/IPv6 (dst-meta by vxlan, geneve, gre)

Helpers:
eBPF map access (lookup/update/delete)
Tail call support
Store/load payload (multi-)bytes
L3/L4 csum fixups
skb redirection (ingress/egress)
Vlan push/pop and tunnel key
trace printk debugging
net cls cgroup classid
Routing realms (dst->tclassid)
Get random number/cpu/ktime

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 7 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

cls bpf, Invocation points.

sch_handle_ingress() sch_handle_egress()

__netif_receive_skb_core() __dev_queue_xmit()

Qdisc

TX path

RX path

ingress qdisc clsact qdisc

fq_codel, sfq, drr, ...

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 8 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

cls bpf, Example setup in 1 slide.
$ clang -O2 -target bpf -o foo.o foo.c

tc qdisc add dev em1 clsact
tc qdisc show dev em1
[...]
qdisc clsact ffff: parent ffff:fff1

tc filter add dev em1 ingress bpf da obj foo.o sec p1
tc filter add dev em1 egress bpf da obj foo.o sec p2

tc filter show dev em1 ingress
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle 0x1 foo.o:[p1] direct-action

tc filter show dev em1 egress
filter protocol all pref 49152 bpf
filter protocol all pref 49152 bpf handle 0x1 foo.o:[p2] direct-action

tc filter del dev em1 ingress pref 49152
tc filter del dev em1 egress pref 49152

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 9 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

tc frontend.

Common loader backend for f bpf, m bpf, e bpf

Walks ELF file to generate program fd, or fetches fd from pinned
Setup via ELF object file in multiple steps:

Mounts bpf fs, fetches all ancillary sections
Sets up maps (fd from pinned or new with pinning)
Relocations for injecting map fds into program
Loading of actual eBPF program code into kernel
Setup and injection of tail called sections

Grafting of existing prog arrays

Dumping trace pipe

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 10 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

tc eBPF examples, minimal module.
$ cat >foo.c <<EOF

#include "bpf_api.h"

__section_cls_entry
int cls_entry(struct __sk_buff *skb)
{

/* char fmt[] = "hello prio%u world!\n"; */
skb->priority = get_cgroup_classid(skb);
/* trace_printk(fmt, sizeof(fmt), skb->priority); */
return TC_ACT_OK;

}

BPF_LICENSE("GPL");
EOF

$ clang -O2 -target bpf -o foo.o foo.c
tc filter add dev em1 egress bpf da obj foo.o
tc exec bpf dbg # -> dumps trace_printk()

cgcreate -g net_cls:/foo
echo 6 > foo/net_cls.classid
cgexec -g net_cls:foo ./bar # -> app ./bar xmits with priority of 6

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 11 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

tc eBPF examples, map sharing.
#include "bpf_api.h"

BPF_ARRAY4(map_sh, 0, PIN_OBJECT_NS, 1);
BPF_LICENSE("GPL");

__section("egress") int egr_main(struct __sk_buff *skb)
{

int key = 0, *val;
val = map_lookup_elem(&map_sh, &key);
if (val)

lock_xadd(val, 1);
return BPF_H_DEFAULT;

}

__section("ingress") int ing_main(struct __sk_buff *skb)
{

char fmt[] = "map val: %d\n";
int key = 0, *val;
val = map_lookup_elem(&map_sh, &key);
if (val)

trace_printk(fmt, sizeof(fmt), *val);
return BPF_H_DEFAULT;

}

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 12 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

tc eBPF examples, tail calls.
#include "bpf_api.h"

BPF_PROG_ARRAY(jmp_tc, JMP_MAP, PIN_GLOBAL_NS, 1);
BPF_LICENSE("GPL");

__section_tail(JMP_MAP, 0) int cls_foo(struct __sk_buff *skb)
{

char fmt[] = "in cls_foo\n";
trace_printk(fmt, sizeof(fmt));
return TC_H_MAKE(1, 42);

}

__section_cls_entry int cls_entry(struct __sk_buff *skb)
{

char fmt[] = "fallthrough\n";
tail_call(skb, &jmp_tc, 0);
trace_printk(fmt, sizeof(fmt));
return BPF_H_DEFAULT;

}

$ clang -O2 -DJMP_MAP=0 -target bpf -o graft.o graft.c
tc filter add dev em1 ingress bpf obj graft.o

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 13 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Code and further information.

Take-aways:
Writing eBPF programs for tc is really easy
Stable ABI, fully programmable for specific use-cases
Native performance when JITed!

Code:
Everything upstream in kernel, iproute2 and llvm!
Available from usual places, e.g. https://git.kernel.org/

Some further information:
Examples in iproute2’s examples/bpf/

Documentation/networking/filter.txt

Man pages bpf(2), tc-bpf(8)

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 14 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

https://git.kernel.org/

Appendix / Backup.

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 15 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eBPF, Helper functions.
Signature: u64 foo(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)

Calling convention:
R0 → return value
R1-R5 → function arguments
R6-R9 → callee saved
R10 → read-only frame pointer

Specification for verifier, example:
static const struct bpf_func_proto foo_proto = {

.func = foo,

.gpl_only = false,

.ret_type = RET_INTEGER,

.arg1_type = ARG_CONST_MAP_PTR,

.arg2_type = ARG_PTR_TO_MAP_KEY,

.arg3_type = ARG_PTR_TO_MAP_VALUE,

.arg4_type = ARG_ANYTHING,
};

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 16 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eBPF, Helper functions.

eBPF program
Populates R1 - R5 depending on specification
BPF RAW INSN(BPF JMP | BPF CALL, 0, 0, 0, BPF FUNC foo)
Reads out R0 if needed
Can only use core kernel provided BPF FUNC * helpers

Kernel space
eBPF verification step
Mapping of BPF FUNC * (insn->imm) to struct bpf func proto

Call fixup: insn->imm = fn->func - bpf call base;

Invocation: R0 = (bpf call base + insn->imm)(R1, ..., R5);

JITing rather straight forward, x86 64 → 1:1 mapping to HW registers

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 17 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eBPF, Maps.

Lightweight key/value store for keeping state
Generic, efficient data structures

Array, hash table, (per CPU variants soon)

Application-specific data structures
Program array, perf event array

Map creation only from user space → bpf(2)

Map access for lookup, update, delete:
User space application → bpf(2) with fd
eBPF program → helper functions

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 18 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eBPF, Maps.

eBPF loader/program
Map mostly used in R1 as type ARG CONST MAP PTR

Loader fetches map fd via bpf(2)

Rewrites instruction BPF LD MAP FD(BPF REG 1, fd)

Expands to double bpf insn BPF LD | BPF IMM | BPF DW

First part holds .src reg = BPF PSEUDO MAP FD, .imm = fd

Kernel space
eBPF verification step
Recognizes BPF PSEUDO MAP FD keyword
Fetches real map from process fd table
Stores actual map pointer in BPF LD | BPF IMM | BPF DW

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 19 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eBPF, Tail calls.

Idea: allow eBPF programs to call other eBPF programs

No return to old program, same stack frame used (think of long jump)
Consists of 2 components:

Program array map, populated by user space with eBPF fds
eBPF helper: bpf tail call(ctx, &jmp table, index)

Kernel caches actual pointers to map, updates xchg()’ed

Kernel translates BPF FUNC tail call into instructions
Fall-through when lookup failed, otherwise insn = prog->insnsi

Powerful concept for live eBPF program updates, dispatching protocol
parsers, etc

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 20 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eBPF, Object pinning.

Everything being tied to fds → thus, tied to program livetime

Makes f.e. eBPF map sharing cumbersome
Option 1: UDS

File descriptor passing, works in general with eBPF fds
Requires deploying extra daemon for each application

Option 2: small special purpose fs (utilized by tc)
Maps/programs can be pinned via bpf(2) as fs node
Picked up via bpf(2) again, point to same map/program
No difference to ”normal” created bpf(2) fds
fs per mountns, supports bind-mounts, hard links, etc

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 21 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eBPF, Security.

Aim for BPF is to be ”safe” as in ”cannot crash the kernel” ;)
Primary job of the verifier, eBPF one more complex

Checks for cyclic prog flow, uninitialized mem, dead code, types, etc

CONFIG DEBUG SET MODULE RONX on x86 64, arm, arm64, s390
Locks down an entire eBPF program as RO for its lifetime
When JITed, locks module memory as RO and randomizes start address
Near future: constant blinding to mitigate JIT spraying
JIT switch: sysctl net.core.bpf jit enable

eBPF restricted for unprivileged programs (socket filters)
Very few helpers allowed (map access, tail calls, and few others)
Restrictions on pointers (no arithmetic, passing to helpers, etc)
Once switch: sysctl kernel.unprivileged bpf disabled

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 22 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eBPF, LLVM.

And most importantly: clang -O2 -target bpf -o foo.o foo.c

eBPF progs written in ”restricted C”, other frontends possible (P4)
Compiled to eBPF insns by LLVM (since 3.7), outputs ELF file

clang -O2 -target bpf -c foo.c -S -o -

readelf -a foo.o, readelf -x ... foo.o

ELF file → container for map specs, program code, license, etc

Holds everything for ”loaders” like tc to get it into kernel
Typical workflow, example:

C → LLVM → ELF → tc → kernel (verification/JIT) → cls bpf (exec)

Daniel Borkmann tc and cls bpf with eBPF February 11, 2016 23 / 23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

