The CLASShoFIRES: Who's Got Your Back?

Jamal Hadi Salim Lucas Bates

Linux Traffic Control: Overview

new additional classact hook at the egress port

The Lord of All Rings: TC Classifier Action Subsystem

- Sorry Sauron, No ONE ring to rule all Classifiers
 - Unix philosophy: Do one thing and do it well
 - Can add new classifiers and actions
 - Formal BNF grammar for describing policy composition
 - Allows loops and branches

Motivation

- Two new Classiffiers over the last year
 - Flower and [e]bpf
- Curiosity about perf numbers for these
 - Last time was in 2005 at UKUUG ;->
- Look like an easy netdev11 paper
 - Speaking of being delusional!
- Years of SDN "flow" work with big ASICs
 - Curious how much could be done within the kernel
- The DPDK/user-space processing noise

Picking the System Under Test

- Want to compare against what we do on ASICs:
 - Per-flow actions
 - At minimal accounting of bytes/packets
 - No hashing or groupings of flows via masks
 - That would be really boring
- Being Fair to all is important
 - Try to be objective and specify assumptions
 - Compare <u>not</u> Oranges with Apples

Picking the System Under Test

- In addition to flower and classic bpf pick an existing classifier for comparison
 - Picked the *u32* classifier
 - Swiss-army knife of packet filtering
 - Mysterious to some
 - So fun was to be had...

Classic bpf the Linux Way

- On Linux: bpf-based linux packet filter
 - Extended branching and not depending on netdev/port
- Note: This talk is <u>not about using bpf as actions or extended bpf</u>
- Restricted byte code compiled in user space intepretted in the kernel
 - Register based VM in the kernel means natural mapping to hardware cpu instructions
 - JIT BPF was fitting progression
 - Forward DAG

The bpf classic classifier

- Authored by Daniel Borkmann
 - Re-uses existing bpf-based linux packet filter
 - Extended branching and not depending on netdev/port
- Note: This talk is not about using bpf as actions or extended bpf
- Classical BPF had a big monolithic filter blob with limited program space
 - tc framework
 - · allows many small bpf blobs
 - Ability to create policy loops with many small bpf blobs

The flower classifier

- Written by Jiri Pirko
- Clever: Utilizes commodity features
 - Flow cache
 - Already being built as packet traverses stack
 - Rhashtable
 - Optimized key-based hash table implementation

The flower classifier

- Currently supports a subset of flow tuples
 - Src/dst MAC, ethertype, src/dst Ipv4/6, src/dst transport port, ingress dev at egress
- Potential for rest of flow cache
 - Vlanid, MPLS labels, GRE keys, TIPC
 - New fields added over time
- Very human friendly
 - Both from cli and programmatic level

The u32 classifier

The u32 classifier

Picking The Metrics

- Datapath Throughput performance
 - Easy one we tackle here
- Datapath Latency
 - Unfortunately didnt have time to pursue this
- Usability
 - This is subjective if you care about humans
- Extensibility
 - Programmability
 - · Either via scripting or coding
- Control path throughput and latency
 - Didnt have time to chase
 - Have opinions will handwave in this talk

Focus On The SUT, kid

- Reduce as many variables as possible on System Under Test
 - SUT: implementation of classifier
- Possible distractions
 - System multi-processing locks
 - Driver code paths (both ingress + egress)
 - Slow system code paths
 - Intermediate handoff queues

Picking The Battle Scene

- Avoid system Locks and intermediate handoff queues
 - Use single core
 - Pktgen to source traffic from one CPU
 - Ingress sourcing by Alexei S.
 - Added Egress sourcing that didnt bypass qdisc

Focus On The SUT

- Get rid of Driver overhead
 - Use dummy netdev
 - Drops packets on the floor

Picking The Battle Scenes

Focus On The SUT, kid

- Two weeks and a few thousand tests later...
 - Too many battle scenes!
 - We need to narrow it down to just the one scene
 - by the fountain beside city hall
 - And on a full moon at midnight
- Pick a hook to use
 - Baseline to justify it

Test Setup

- Intel NUC
 - Quad Core i7-5557U CPU @ 3.10GHz
 - 800Mhz per cpu?
 - 16G 1600Mhz (dual stick) RAM
- Kernel
 - Net-next 4.4.1-rc1
 - Patched for flower and pktgen to do txmit qdisc

Baselining: Ingress Drop at *ip_rcv(*)

Baselining: Ingress Drop at *ip_rcv()*

1 rule(flow) with 1 tuple (src ip that matches)

Baselining: Ingress Drop action

1 rule(flow) with 1 tuple (src ip) that matches

Baselining: Variance (mbps vs pktsize)

Cutting out tests

Focus on average of 4 runs

Baselining Packet Size Effect

Cutting out tests

- Focus on average of 4 runs
- Use single packet size: 1020B

Cutting out tests

- Focus on average of 4 runs
- Use single packet size: 1020B
- Ignore bpf
 - All tests showing bpfjit doing better

Baselining: 1 vs 5 tuples(1020B)

Varying Tuple Counts in Filters

Cutting out tests

- Ignore bpf: Bpfjit is better
- Focus on average of 4 runs
- Use single packet size: 1020B
- Use 5 tuples because it is more realistic

Cutting out tests

- Ignore bpf: Bpfjit is better
- Focus on average of 4 runs
- Use single packet size: 1020B
- Use 5 tuples because it is more realistic
- No forwarding tests because it contributes negatively

Baselining: Egress qdisc xmit Action: drop

Baselining: Egress qdisc xmit No action

Cutting out tests

- Ignore bpf: Bpfjit is better
- Focus on average of 4 runs
- Use single packet size: 1020B
- Use 5 tuples because it is more realistic
- No forwarding tests because it will influence results
- No egress testing because it a lot slower
- Drop action so we can account for usage

Taking Stock

- The ingress can handle a lot of throughput
- The Forwarding code needs some investigation
- Memory latency is a bigger factor
 - Would like to buy a different latency RAM chips

The Final Frontier

Preparing For Battle

- Battle Scene
 - Ingress qdisc
 - We know this is not the most fair test for flower
- Single cpu bursting from pktgen
- All Classifier filters have drop action
 - Provides accounting
 - Performance difference vs dropping at ip_rcv small
- 5 tuples
- 1020B packet size
- Batch of 4 tests each 25 secs

Let The Games Begin

Performance with Multiple Rules Installed

Best Case: Matching Rule is First

Let The Games Begin

Performance with Multiple Rules Installed

Worst Case: Matching Rule is Last

Let The Games Begin

Performance with Multiple Rules Installed

Worst Case: Matching Rule is Last, At Least 100 Rules Installed

U32 Multi-trie

U32 Multi-trie

Effects of u32 Multitry

Some Gotchas

Lock Debugging is bad for performance

The Iron Triangle

- Performance
 - Data path processing
 - Control Path processing
- Usability
 - Admin level usability
- Extensibility
 - Via programmability or scriptability

References

- https://en.wikipedia.org/wiki/One_Ring
- "On getting tc classifier fully programmable with cls_bpf" (Daniel Borkmann) @netdev11
- "BPF In-kernel Virtual Machine Alexei Starovoitov" @netdev01
- "Implementing Open vSwitch datapath using TC" (Jiří Pírko)
 @netdev01
- "TC Classifier Action Subsystem Architecture" (Jamal Hadi Salim)
 @netdev01
- "clsact: kernel commit 1f211a1b929c804100e138c5d3d656992cfd5622" (Daniel Borkmann)

Diagrams

http://www.dummies.com/how-to/content/string-theory-defining-a-black-hole.
 html