
  

The CLASShoFIRES: Who's Got 
Your Back?

Jamal Hadi Salim
Lucas Bates

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Linux Traffic Control: Overview

Ingress hook egress hook

new additional classact hook at the egress port

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

The Lord of All Rings:
 TC Classifier Action Subsystem

● Sorry Sauron, No ONE ring to rule all Classifiers
– Unix philosophy: Do one thing and do it well

● Can add new classifiers and actions
● Formal BNF grammar for describing policy composition

– Allows loops and branches

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Motivation

● Two new Classiffiers over the last year
– Flower and [e]bpf

● Curiosity about perf numbers for these 
– Last time was in 2005 at UKUUG ;->

● Look like an easy netdev11 paper
– Speaking of being delusional!

● Years of SDN “flow” work with big ASICs
– Curious how much could be done within the kernel

● The DPDK/user-space processing noise

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Picking the System Under Test

● Want to compare against what we do on ASICs:
– Per-flow actions

● At minimal accounting of bytes/packets
● No hashing or groupings of flows via masks

– That would be really boring

● Being Fair to all is important
– Try to be objective and specify assumptions

– Compare not Oranges with Apples

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Picking the System Under Test

● In addition to flower and classic bpf pick an 
existing classifier for comparison
– Picked the u32 classifier

● Swiss-army knife of packet filtering
– Mysterious to some

● So fun was to be had.. 

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Classic bpf the Linux Way 

● On Linux: bpf-based linux packet filter
● Extended branching and not depending on netdev/port

● Note: This talk is not about using bpf as actions or extended bpf
● Restricted byte code compiled in user space intepretted in the kernel

– Register based VM in the kernel means natural mapping to hardware cpu 
instructions

● JIT BPF was fitting progression

– Forward DAG

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

The bpf classic classifier

● Authored by Daniel Borkmann
– Re-uses existing bpf-based linux packet filter

● Extended branching and not depending on netdev/port

● Note: This talk is not about using bpf as actions or extended bpf
● Classical BPF had a big monolithic filter blob with limited program space

– tc framework
● allows many small bpf blobs
● Ability to create policy loops with many small bpf blobs

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

The flower classifier

● Written by Jiri Pirko
● Clever: Utilizes 

commodity features 
– Flow cache

● Already being built as 
packet traverses stack 

– Rhashtable
● Optimized key-based 

hash table 
implementation

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

The flower classifier

● Currently supports a subset of flow tuples
–  Src/dst MAC, ethertype, src/dst Ipv4/6, src/dst 

transport port, ingress dev at egress

● Potential for rest of flow cache
– Vlanid, MPLS labels, GRE keys, TIPC

– New fields added over time

● Very human friendly
– Both from cli and programmatic level

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

The u32 classifier

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

The u32 classifier

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Picking The Metrics

● Datapath Throughput performance
– Easy one we tackle here

● Datapath Latency
– Unfortunately didnt have time to pursue this

● Usability
– This is subjective if you care about humans

● Extensibility
– Programmability

● Either via scripting or coding

● Control path throughput and latency
– Didnt have time to chase

● Have opinions - will handwave in this talk

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Focus On The SUT, kid

● Reduce as many variables as possible on 
System Under Test
– SUT: implementation of classifier

● Possible distractions 
– System multi-processing locks

– Driver code paths (both ingress + egress)

– Slow system code paths

– Intermediate handoff queues

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Picking The Battle Scene

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Focus On The SUT

● Avoid system Locks and intermediate handoff queues
– Use single core

– Pktgen to source traffic from one CPU
● Ingress sourcing by Alexei S.
● Added Egress sourcing that didnt bypass qdisc

Pktgen

Pktgen
Dont bypass 

qdisc

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Focus On The SUT

● Get rid of Driver overhead
– Use dummy netdev

● Drops packets on the floor

Pktgen
src=ingress

Pktgen
Dont bypass 

qdisc

Dummy

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Picking The Battle Scenes

Pktgen
src=ingress

Pktgen
Dont bypass 

qdisc

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Focus On The SUT, kid

● Two weeks and a few thousand tests later...
– Too many battle scenes!

– We need to narrow it down to just the one scene
●  by the fountain beside city hall

– And on a full moon at midnight

● Pick a hook to use
– Baseline to justify it

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Test Setup

● Intel NUC
– Quad Core i7-5557U CPU @ 3.10GHz

● 800Mhz per cpu?

– 16G 1600Mhz (dual stick) RAM

● Kernel
– Net-next 4.4.1-rc1

● Patched for flower and pktgen to do txmit qdisc

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Baselining: Ingress Drop at ip_rcv()

60 124 252 600 1020
0

50000

100000

150000

200000

250000

300000

No qdisc

Qdisc Only

Packet Size (B)

B
a

n
d

w
id

th
 (

M
b

p
s)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Baselining: Ingress Drop at ip_rcv()

● 1 rule(flow) with 1 tuple (src ip that matches)

60 124 252 600 1020
0

50000

100000

150000

200000

250000

300000

bpf

bpfjit

flower

u32

No qdisc

Qdisc Only

Packet Size (B)

B
a

n
d

w
id

th
 (

M
b

p
s)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Baselining: Ingress Drop action 

● 1 rule(flow) with 1 tuple (src ip) that matches

60 124 252 600 1020
0

50000

100000

150000

200000

250000

300000

bpf

bpfjit

flower

u32

No Classifier

Qdisc Only

Packet Size (B)

M
b

p
s

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Baselining: Variance
(mbps vs pktsize)

60
124

252
600

1020
60

124
252

600
1020

60
124

252
600

1020

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Average

Min

Max

BPFjit Flower u32

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Cutting out tests

● Focus on average of 4 runs

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Baselining Packet Size Effect

60 124 252 600 1020
0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

bpf

bpfjit

flower

u32

No qdisc

Qdisc Only

Packet Size (B)

P
a

ck
e

ts
 P

e
r 

S
e

co
n

d
Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Cutting out tests

● Focus on average of 4 runs
● Use single packet size: 1020B

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Cutting out tests

● Focus on average of 4 runs
● Use single packet size: 1020B
● Ignore bpf

– All tests showing bpfjit doing better

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Baselining: 1 vs 5 tuples(1020B)

bpjfit flower u32
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Varying Tuple Counts in Filters

1

5

Classifier

B
a

n
d

w
id

th
 (

M
b

p
s)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Cutting out tests

● Ignore bpf: Bpfjit is better
● Focus on average of 4 runs
● Use single packet size: 1020B
● Use 5 tuples because it is more realistic

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  
60 124 252 600 1020

0

10000

20000

30000

40000

50000

60000

70000

Performance Comparison:  Routing, blackhole routing, mirred

Blackhole

Routed

bpfjit mirred

flower mirred

u32 mirred

Packet Size (B)

B
a

n
d

w
id

th
 (

M
b

p
s)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Cutting out tests

● Ignore bpf: Bpfjit is better
● Focus on average of 4 runs
● Use single packet size: 1020B
● Use 5 tuples because it is more realistic
● No forwarding tests because it contributes 

negatively

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Baselining: Egress qdisc xmit
Action: drop

60 124 252 600 1020
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

bpfjit flower u32 No qdisc Qdisc Only

Packet Size (B)

B
a

n
d

w
id

th
 (

M
b

p
s)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Baselining: Egress qdisc xmit
No action

60 124 252 600 1020
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

bpfjit flower u32 Default Qdisc Only

Packet Size (B)

B
a

n
d

w
id

th
 (

M
b

p
s)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Cutting out tests

● Ignore bpf: Bpfjit is better
● Focus on average of 4 runs
● Use single packet size: 1020B
● Use 5 tuples because it is more realistic
● No forwarding tests because it will influence results
● No egress testing because it a lot slower
● Drop action so we can account for usage

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Taking Stock

● The ingress can handle a lot of throughput
● The Forwarding code needs some investigation
● Memory latency is a bigger factor

– Would like to buy a different latency RAM chips 

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

The Final Frontier

Pktgen
src=ingress

Pktgen
Dont bypass 

qdisc

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Preparing For Battle

● Battle Scene
– Ingress qdisc

● We know this is not the most fair test for flower

● Single cpu bursting from pktgen
● All Classifier filters have drop action

– Provides accounting

– Performance difference vs dropping at ip_rcv small

● 5 tuples
● 1020B packet size
● Batch of 4 tests each 25 secs

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Let The Games Begin

1 2 10 100 1000
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Performance with Multiple Rules Installed

Best Case: Matching Rule is First

bpfjit

flower

u32

Number of Filters

B
a

n
d

w
id

th
 (

M
b

p
s)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Let The Games Begin

1 2 10 100 1000
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Performance with Multiple Rules Installed

Worst Case: Matching Rule is Last

bpfjit

flower

u32

Number of Filters

B
a

n
d

w
id

th
 (

M
b

p
s)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Let The Games Begin

bpfjit flower u32
0

1000

2000

3000

4000

5000

6000

7000

8000

Performance with Multiple Rules Installed

Worst Case: Matching Rule is Last, At Least 100 Rules Installed

100

1000

B
a

n
d

w
id

th
 (

M
b

p
s)

88 Mbps73 Mbps
463 Mbps

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

U32 Multi-trie

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

U32 Multi-trie

0

20000

40000

60000

80000

100000

120000

140000

160000

Effects of u32 Multitry

1000 Filter Match First

1000 Filter Match Last

64K Filters in Linked Tables

B
a

n
d

w
id

th
 (

M
b

p
s)

463 Mbps

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Some Gotchas

● Lock Debugging is bad for performance

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

The Iron Triangle

● Performance
– Data path processing

– Control Path processing

● Usability
– Admin level usability

● Extensibility
– Via programmability or scriptability

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

References

● https://en.wikipedia.org/wiki/One_Ring
● "On getting tc classifier fully programmable with cls_bpf" (Daniel 

Borkmann) @netdev11 
● “BPF In-kernel Virtual Machine Alexei Starovoitov” @netdev01
● “Implementing Open vSwitch datapath using TC” (Jiří Pírko) 

@netdev01
● “TC Classifier Action Subsystem Architecture” (Jamal Hadi Salim) 

@netdev01
● “clsact: kernel commit 

1f211a1b929c804100e138c5d3d656992cfd5622”

(Daniel Borkmann)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

https://en.wikipedia.org/wiki/One_Ring


  

Diagrams

● http://www.dummies.com/how-to/content/string-theory-defining-a-black-hole.
html

●

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

http://www.dummies.com/how-to/content/string-theory-defining-a-black-hole.html
http://www.dummies.com/how-to/content/string-theory-defining-a-black-hole.html

