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Linux Traffic Control: Overview

Ingress hook egress hook

new additional classact hook at the egress port
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The Lord of All Rings:
 TC Classifier Action Subsystem

● Sorry Sauron, No ONE ring to rule all Classifiers
– Unix philosophy: Do one thing and do it well

● Can add new classifiers and actions
● Formal BNF grammar for describing policy composition

– Allows loops and branches
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Motivation

● Two new Classiffiers over the last year
– Flower and [e]bpf

● Curiosity about perf numbers for these 
– Last time was in 2005 at UKUUG ;->

● Look like an easy netdev11 paper
– Speaking of being delusional!

● Years of SDN “flow” work with big ASICs
– Curious how much could be done within the kernel

● The DPDK/user-space processing noise
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Picking the System Under Test

● Want to compare against what we do on ASICs:
– Per-flow actions

● At minimal accounting of bytes/packets
● No hashing or groupings of flows via masks

– That would be really boring

● Being Fair to all is important
– Try to be objective and specify assumptions

– Compare not Oranges with Apples
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Picking the System Under Test

● In addition to flower and classic bpf pick an 
existing classifier for comparison
– Picked the u32 classifier

● Swiss-army knife of packet filtering
– Mysterious to some

● So fun was to be had.. 
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Classic bpf the Linux Way 

● On Linux: bpf-based linux packet filter
● Extended branching and not depending on netdev/port

● Note: This talk is not about using bpf as actions or extended bpf
● Restricted byte code compiled in user space intepretted in the kernel

– Register based VM in the kernel means natural mapping to hardware cpu 
instructions

● JIT BPF was fitting progression

– Forward DAG
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The bpf classic classifier

● Authored by Daniel Borkmann
– Re-uses existing bpf-based linux packet filter

● Extended branching and not depending on netdev/port

● Note: This talk is not about using bpf as actions or extended bpf
● Classical BPF had a big monolithic filter blob with limited program space

– tc framework
● allows many small bpf blobs
● Ability to create policy loops with many small bpf blobs
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The flower classifier

● Written by Jiri Pirko
● Clever: Utilizes 

commodity features 
– Flow cache

● Already being built as 
packet traverses stack 

– Rhashtable
● Optimized key-based 

hash table 
implementation
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The flower classifier

● Currently supports a subset of flow tuples
–  Src/dst MAC, ethertype, src/dst Ipv4/6, src/dst 

transport port, ingress dev at egress

● Potential for rest of flow cache
– Vlanid, MPLS labels, GRE keys, TIPC

– New fields added over time

● Very human friendly
– Both from cli and programmatic level
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The u32 classifier
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The u32 classifier
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Picking The Metrics

● Datapath Throughput performance
– Easy one we tackle here

● Datapath Latency
– Unfortunately didnt have time to pursue this

● Usability
– This is subjective if you care about humans

● Extensibility
– Programmability

● Either via scripting or coding

● Control path throughput and latency
– Didnt have time to chase

● Have opinions - will handwave in this talk
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Focus On The SUT, kid

● Reduce as many variables as possible on 
System Under Test
– SUT: implementation of classifier

● Possible distractions 
– System multi-processing locks

– Driver code paths (both ingress + egress)

– Slow system code paths

– Intermediate handoff queues
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Picking The Battle Scene
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Focus On The SUT

● Avoid system Locks and intermediate handoff queues
– Use single core

– Pktgen to source traffic from one CPU
● Ingress sourcing by Alexei S.
● Added Egress sourcing that didnt bypass qdisc

Pktgen

Pktgen
Dont bypass 

qdisc
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Focus On The SUT

● Get rid of Driver overhead
– Use dummy netdev

● Drops packets on the floor

Pktgen
src=ingress

Pktgen
Dont bypass 

qdisc

Dummy
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Picking The Battle Scenes

Pktgen
src=ingress

Pktgen
Dont bypass 

qdisc
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Focus On The SUT, kid

● Two weeks and a few thousand tests later...
– Too many battle scenes!

– We need to narrow it down to just the one scene
●  by the fountain beside city hall

– And on a full moon at midnight

● Pick a hook to use
– Baseline to justify it
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Test Setup

● Intel NUC
– Quad Core i7-5557U CPU @ 3.10GHz

● 800Mhz per cpu?

– 16G 1600Mhz (dual stick) RAM

● Kernel
– Net-next 4.4.1-rc1

● Patched for flower and pktgen to do txmit qdisc
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Baselining: Ingress Drop at ip_rcv()
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Baselining: Ingress Drop at ip_rcv()

● 1 rule(flow) with 1 tuple (src ip that matches)
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Baselining: Ingress Drop action 

● 1 rule(flow) with 1 tuple (src ip) that matches
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Baselining: Variance
(mbps vs pktsize)
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Cutting out tests

● Focus on average of 4 runs
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Baselining Packet Size Effect
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Cutting out tests

● Focus on average of 4 runs
● Use single packet size: 1020B
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Cutting out tests

● Focus on average of 4 runs
● Use single packet size: 1020B
● Ignore bpf

– All tests showing bpfjit doing better
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Baselining: 1 vs 5 tuples(1020B)
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Cutting out tests

● Ignore bpf: Bpfjit is better
● Focus on average of 4 runs
● Use single packet size: 1020B
● Use 5 tuples because it is more realistic
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Cutting out tests

● Ignore bpf: Bpfjit is better
● Focus on average of 4 runs
● Use single packet size: 1020B
● Use 5 tuples because it is more realistic
● No forwarding tests because it contributes 

negatively
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Baselining: Egress qdisc xmit
Action: drop
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Baselining: Egress qdisc xmit
No action
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Cutting out tests

● Ignore bpf: Bpfjit is better
● Focus on average of 4 runs
● Use single packet size: 1020B
● Use 5 tuples because it is more realistic
● No forwarding tests because it will influence results
● No egress testing because it a lot slower
● Drop action so we can account for usage

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



  

Taking Stock

● The ingress can handle a lot of throughput
● The Forwarding code needs some investigation
● Memory latency is a bigger factor

– Would like to buy a different latency RAM chips 
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The Final Frontier

Pktgen
src=ingress

Pktgen
Dont bypass 

qdisc
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Preparing For Battle

● Battle Scene
– Ingress qdisc

● We know this is not the most fair test for flower

● Single cpu bursting from pktgen
● All Classifier filters have drop action

– Provides accounting

– Performance difference vs dropping at ip_rcv small

● 5 tuples
● 1020B packet size
● Batch of 4 tests each 25 secs
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Let The Games Begin
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Let The Games Begin
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Let The Games Begin

bpfjit flower u32
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U32 Multi-trie
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U32 Multi-trie
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Some Gotchas

● Lock Debugging is bad for performance
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The Iron Triangle

● Performance
– Data path processing

– Control Path processing

● Usability
– Admin level usability

● Extensibility
– Via programmability or scriptability
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Diagrams

● http://www.dummies.com/how-to/content/string-theory-defining-a-black-hole.
html

●
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