
Tzahi Oved tzahio@mellanox.com ; Or Gerlitz ogerlitz@mellanox.com

Netdev 1.1 | 2016

HW High-Availability and Link Aggregation for Ethernet switch
and NIC RDMA using Linux bonding/team

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

mailto:tzahio@mellanox.com
mailto:ogerlitz@mellanox.com

Bonding / Team drivers
• both expose software netdevice that provides LAG / HA toward the

networking stack

• team/bond is considered “upper” device to “lower” NIC net-devices
through which packets are flowing to the wire

• different modes of operation: Active/Passive, 802.3ad (LAG) and
policies: link monitoring, xmit hash, etc

• Bonding – legacy

• Team - introduced in 3.3, more modular/flexible design, extendable,
state-machine in user-space library/daemon

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

HW LAG using SW Team/Bond
• Idea: use SW LAG on netdevices to apply LAG into HW offloaded traffic

• offloaded traffic – doesn’t pass through the network stack

100Gbs Switch

• each port is represented by netdevice

• SW LAG on few ports netdevs set HW LAG on physical ports (mlxsw, upstream 4.5)

40/100Gbs NIC

• each port of the device is Eth netdevice

• RDMA traffic is offloaded from the network stack

• port netdevice serves for plain Eth networking and control pass for the RDMA stack

• SW LAG on two NIC ports netdevs HW LAG for RDMA traffic (mlx4, upstream 4.0)

• under SRIOV, SW LAG on PF NIC ports  HW LAG for vport used by VF (mlx4, upstream 4.5)

• for 100Gbs NIC (mlx5) – coming soon…

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Network notifiers && their usage for HW LAG
• notification sent to subscribed consumers in the networking stack on

a change which is about to take place, or that just happened

• the notification contains events type and affected parties

• Notifications used for LAG: pre change-upper, change-upper

HW driver usage for LAG notifications:

• pre-change upper: refuse certain configurations, NAK the change

• change upper: create / configure HW LAG

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Switch HW driver

• ip link set dev sw1p1 master team0

• NETDEV_PRECHANGEUPPER
• if lag type is not LACP, etc - NAK

 operation fails

• NETDEV_CHANGEUPPER
• observe that new lag is created for the switch

 create HW LAG and add this port there

• ip link set dev sw1p2 master team0

• NETDEV_PRECHANGEUPPER
• […]

• NETDEV_CHANGEUPPER
• observe that this lag already exists

 add this port there

switch driver

team

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

RDMA over Ethernet (RoCE) / RDMA-CM
• The upstream RDMA stack supports multiple transports: RoCE, IB, iWARP

• RoCE – RDMA over Converged Ethernet, RoCE V2 (upstream 4.5), IBTA RDMA headers over UDP.
Uses IPv4/6 addresses set over the regular Eth NIC port netdev

• RoCE apps use RDMA-CM API for control path and verbs API for data path

• RDMA-CM API (include/rdma/rdma_cm.h)
• Address resolution – Local Route lookup + ARP/ND services (rdma_resolve_addr())
• Route resolution – Path lookup in IB networks (rdma_resolve_route())
• Connection establishment – per transport CM to wire the offloaded connection (rdma_connect())

• Verbs API
• Send/RDMA – Send message or perform RDMA operation (post_send())
• Poll– Poll for completion of Send/RDMA or Receive operation (poll_cq())

• Async completion handling and fd semantics are supported

• Post Receive Buffer – Hand receive buffers to the NIC (post_recv())

• RDMA Device
• The DEVICE structure, exposes all above operations
• Associated with net_device

• Available for both RoCE and user mode Ethernet programming (DPDK)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Native Model – HW Teaming
• Configuration

• Native Linux administration
• RoCE Bonding is mainly auto configured

• RoCE
• Use transport object (QP, TIS) attribute: port affinity
• RDMA devices associated with eth0, eth1 will be used for

port management only (through Immutable caps)
• And will unregister and register to drop existing consumers

• Register new ib_dev attached to the bond
• eth0, eth1 will listen on Linux bond enslavement netlink events
• New RDMA device will always use vendor pick of PCIe Function

(PF0/1 or both)

• LACP ((802.3ad)
• Either handled by Linux bonding/teaming driver
• Or in HW/FW for supporting NICs (required for many PFs

to single phys port configurations)

• HW Bond
• NIC logic for HW forwarding of ingress traffic to bond/team

RDMA device
• net_dev traffic is passed directly to owner net_dev

according to ingress port

eth0

NIC

Phys

Port1

PCIe

PF0

eth1

Phys

Port2

Linux Bonding/

Teaming

PCIe

PF1

RDMA

Device

HW

Bond

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eSwitch Software Model – Option I

eth0 rep_vf0 rep_vf1

Linux/OVS Bridge

br0

Linux Switch Device

SRIOV

VM0

SRIOV

VM1

NIC

eSwitch

Native OS

Phys

Port

PCIe

VF0.0

PCIe

VF0.1

PCIe

PF0

RDMA

Device

VM2 VM3

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eSwitch Software Model – Option II

rep_phy0 rep_vf0 rep_vf1

Linux/OVS Bridge

rep_eth0eth0

Linux Switch Device

SRIOV

VM0

SRIOV

VM1

NIC

eSwitch

Native OS

Phys

Port

PCIe

VF0.0

PCIe

VF0.1

PCIe

PF0

RDMA

Device

VM2 VM3

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eSwitch Software Model with HA

rep_phy0 rep_vf0 rep_vf1

Linux/OVS Bridge

rep_eth0eth0

Linux Switch Device

SRIOV

VM0

SRIOV

VM1

NIC

Native OS

Phys

Port1

PCIe

VF0.0

PCIe

VF1.0

PCIe

PF0

Phys

Port2

Linux Bonding

PCIe

PF1

RDMA

Device

rep_phy1

eSwitch

HW

Bond

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

eSwitch Software Model with Tunneling

rep_phy0 rep_vf0 rep_vf1

Linux/OVS Bridge

rep_eth0

eth0

Linux Switch Device

NIC

eSwitch

UDP/IP

Stack

Phys

Port

PCIe

PF0

RDMA

Device

VM2 VM3

OVS-VX

Bridge

vxlan net_device

VNI (Key)

SRIOV

VM0

SRIOV

VM1

PCIe

VF0.1

PCIe

VF0.0
HW

Tunnel

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Multi-PCI Socket NIC
• Multiple PCIe end point NIC - NIC can be

connected through one or more PCIe buses
• Each PCIe bus is connected different NUMA

node
• Exposed as 2 or more net_device each with

it’s own associated RDMA device
• Enjoy direct device to local NUMA access
• Application use & feel – would like to work

with single net interface
• Use Linux bonding with RDMA device

bonding
• For TCP/IP traffic on TX, select slave according to

calling context affinity
• For RDMA traffic select slave according to:

• Transport object (QP) logical port affinity
• Or transport object creation thread CPU affinity
• Don’t share HW resources (CQ, SRQ) on different CPU

sockets – each device has it’s own HW resources

CPU CPU
QPI

eth0

Phys

Port

PCIe

PF0

eth1

Linux Bonding/

Teaming

PCIe

PF1

RDMA

Device

HW

Bond
NIC

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

