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Abstract 

Encrypted Internet traffic is becoming the norm, spearheaded by 

the use Transport Layer Socket (TLS) to secure TCP connections.  

This trend introduces a great challenge to data center servers, as 

the symmetric encryption and authentication of TLS records adds 

significant CPU overhead. New CPU capabilities, such as the x86 

AES-NI instruction set, alleviate the problem, yet encryption 

overhead remains high. Alternatively, cryptographic accelerators 

require dedicated HW, consume significant memory bandwidth, 

and increase latency. We propose to offload TLS symmetric 

crypto processing to the network device. Our solution does not re-

quire a TCP Offload Engine (TOE). Rather, crypto processing is 

moved to a kernel TLS module (kTLS [5,6]), which may leverage 

inline TLS acceleration offered by network devices. Transmitted 

packets of offloaded TLS connections pass through the stack un-

encrypted, and are processed on the fly by the device. Similarly, 

received packets are decrypted by the device before being handed 

off to the stack. We will describe the roles and requirements of 

the kTLS module, specify the device offload APIs, and detail the 

TLS processing flows. Finally, we will demonstrate the potential 

performance benefits of network device TLS offloads. 
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 Introduction 

In today’s networks, Transport Layer Security (TLS) is 
widely used to securely connect endpoints both inside data 
centers [1] and on the internet. TLS encrypts, decrypts, and 
authenticates its data, but these operations incur a significant 
overhead on the server.  
Fixed function hardware accelerators are known to give 

improved performance and greater power-efficiency when 

compared to running a software implementation on a 

general purpose CPU.  Cryptographic operation such as 

those used in TLS are very suitable for such hardware 

accelerators but they are not widely used in the context of 

networking. We believe that the reason is that the offload 

model is not good enough. 

Existing solutions fall into four categories:   

 TLS Proxy – A middlebox [2] is used to de-

crypt/encrypt all incoming/outgoing traffic. The 

middlebox is running a TCP connection against 

trusted machines and a TLS connection against 

untrusted machines, reducing the load on the 

trusted machine. However, if applied inside the 

data center, some traffic remains unprotected. 

 TOE – TCP offload engines have been around for 

a while [3]. A TOE could run a full TLS offload as 

well reducing PCI traffic and freeing CPU cycles 

even further. However, the TCP stack of TOE de-

vices is inflexible, and hard to debug and fix when 

compared to a software TCP implementation. 

Moreover, with full TLS offload, security vulnera-

bilities could remain unfixed for a long time. 

 Crypto offload PCI card – A dedicated PCIe 

card to accelerate cryptographic operations, such 

as [4]. In the case of a PCIe card performing en-

cryption/decryption operation, the data is sent to-

wards the card over PCIe. It is then modified and 

sent back for further processing. This can add a 

significant latency to the operation, and is rela-

tively expensive in cost, power, PCIe lanes utili-

zation and CPU utilization. 

 TLS in the kernel – Kernel TLS [5][6] is kernel 

module for performing the bulk symmetric en-

cryption of TLS records by the kernel instead of 

using a user space library. It facilities using send-

file for TLS connections. Moreover, where previ-

ously data was copied once during encryption and 

once again to be sent by TCP, using this approach 

encryption and data copy from user-space to the 

kernel become a single operation. This approach 

can leverage the x86 AES-NI instruction set for 

accelerating AES operations. 

 

Motivation 

To motivate this work, we conducted a simple experiment 
using 2 machines connected back-to-back running a TLS 
session between the 2 machines. We run this experiment 
twice: once using the AES128-GCM ciphersuite and once 
again using the NULL ciphersuite. We obtained the results 



presented in Table 1. We observe that the CPU utilization 
was reduced by 85%, while throughput has increased, 
reaching 10.4Gbps from 6.48Gbps. We argue that our model 
for TLS offload would behave similarly to the NULL 
ciphersuite on the CPU. We therefore believe that it would 
benefit the community to offload TLS encryption to 
hardware. 
 

 
Table 1. Bandwidth and CPU comparison between a TLS socket 

using the AES128-GCM ciphersuite and a TLS socket with the 

NULL ciphersuite. 
 

Model and Software Stack 

In this paper, we propose a model (see Figure 1) where the 
payload of network packets is transformed in-place by the 
network device. This model retains all the benefits of using 
a robust software network stack while offloading the crypto 
data crunching to the device. The data need be sent only 
once to the network device, saving PCIe BW and latency. 
 In the proposed model, the keys used by the TLS socket 
are offloaded to the NIC to which the connected socket is 
routed. The socket is marked as offloaded. From this 
moment onward packets of this TCP socket will be 
encrypted by the device. The device expects software to 
frame TLS packets, including TLS headers and trailers, 
while skipping the actual encryption. The software must 
place those packets into the offloaded socket. The rest of the 
software stack remains unchanged: existing TCP/IP and 
memory flows are unaffected. Existing TCP features such as 
congestion control, retransmission, memory management, 
and other enhancements in the TCP stack are all left 
unchanged.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Kernel software stack for TLS offload. Kernel TLS 

provides plaintext records to TCP, the TCP/IP stack segments the 

records. Finally, the NIC encrypts plaintext records inside the TCP 

segments. 
 

TLS Offload API 

In this section we outline the data path and the control path 
for the TLS offload for the transmit side and suggest an API. 
Ideally, in order to make hardware and software simple, 
packets should be encrypted independently, as in the case of 
IPsec[7], QUIC[8] and DTLS[9]. However, in TLS each 
record is encrypted independently. A TLS record may be 
spread over multiple TCP segments (see Figure 2), while a 
TCP segment might also contain multiple TLS records. 
Thus, intermediate record state between packets of a single 
session must be tracked by the hardware to encrypt 
subsequent packets which are part of a TLS record that 
started on a previous TCP segment.  
 

 
Figure 2. TLS Records split among multiple TCP packets. 
 



Control Path 

The control path is based on an extension of the 

kTLS[5][6] control plane, where an additional flag is 

added to indicate that offload is required. 

In response to an offload request, kTLS calls 

ktls_dev_add, a new NDO, for the netdevice used by that 

socket. kTLS provides the socket and the crypto 

parameters to ktls_dev_add as input. If the device can 

offload this TLS session, the function returns success and 

the socket is marked as offloaded by setting “sk-

>sk_tls_offload” for that socket. From this moment 

onwards, any payload sent over that socket is expected to 

be plaintext. The device will track TCP sequence numbers, 

encrypt and authenticate all packets sent from this socket.  

The sk_destruct function of the TCP socket is replaced 

to free resources related to TLS in the socket layer. 

Similarly, kTLS goes on to call another new NDO called 

ktls_dev_del, in order to free device driver and hardware 

resources. 

 

Data Path 
The data path consists of a fast path and a slow path. The 

following pseudo code is performed by the device driver 

for each packet: 
1. Check packet belongs to offloaded socket (skb-

>sk->sk_tls_offload != 0) 
a. If failed, goto normal packet transmit. 

2. Check packet TCP sequence number against 
expected TCP sequence number 

a. If failed, perform resync (rebuild 
hardware TLS context for the given 
packet) 

3. Send packet to be encrypted, authenticated and 
sent to the network by the device. 

First, the driver checks whether the socket is offloaded; 

otherwise, normal packet processing takes over. Second, 

the TCP sequence number is checked against the expected 

TCP sequence number initialized when the socket was 

offloaded. If the sequence numbers do not match, then the 

slow path (resync) is triggered. Finally, the packet is sent to 

the device to be encrypted, authenticated and sent to the 

wire. 

 

Resync Flow 
As explained in above, the hardware has to track the crypto 

context between TCP packets of an offloaded socket in 

order to process them. It follows that, when the device 

receives a TCP sequence number it does not expect (e.g. 

during retransmission), then additional information is 

required for the hardware to encrypt and authenticate the 

packet. 

To resynchronize hardware state, the prefix of the TLS 

record is needed by the network device. This is sufficient 

                                                        
1 This is at least true for GNUTLS where the TLS record 
sequence number and the IV are the same. 

because each TLS record is encrypted and authenticated 

independently of other TLS records1.  

For example, in Figure 3, after transmitting packets P1-

7, packet P5 is retransmitted. The device has the state 

required to encrypt packet P8. However, to encrypt packet 

P5 the payload of TLS record 2 has to be passed to 

hardware. 

 

 
 
Figure 3. Packet P5 is retransmitted triggering the resync flow. 
 

TLS record 2 is split among 3 TCP packets, some of 

which could have been acknowledge and released from 

memory. To enable the resync flow, the payload of partially 

acknowledged TLS records must not be released from 

memory. To prevent this, kTLS will take an additional 

reference on all payload pages and TCP will call kTLS 

during tcp_clean_rtx_queue() to release acknowledged 

TLS records.  

Additionally, kTLS provides a mapping from TCP 

sequence numbers to the TLS record payload. This 

mapping is exposed to the device driver. The driver uses 

this mapping during the resync flow. For example, in 

Figure 4, the resync flow for SKB 2 queries kTLS for the 

mapping of the TCP sequence number of SKB2, in order to 

acquire the payload of TLS Record 1. 

 

 
Figure 4. The use of a mapping from SKB2 TCP sequence number 

to the payload of TLS record 1. 
 

Zero-Copy Sendfile 

With crypto offload it would have been possible to enable 

zero-copy sendfile functionallity, which is not possible 

without crypto offload. Similarly to the way sendfile works 

with TCP sockets. However, with TLS there is an 

undesirable side-effect that occurs during retransmissions. 

If the data being transmitted is dropped and the new data is 



different, then the crypto offload would rencrypt the new 

data as part of a previously transmitted TLS record. 

Resulting in authentication tag failure on the receiving 

side, as described in figure 5. Another problem, is that with 

AES-GCM, a counter mode cipher, the data retransmitted 

will use the same counter with different plaintext. This 

enables an attacker to XOR the ciphertext transmitted with 

ciphertext retransmitted, resulting in the elimination of the 

keystream, i.e. a XOR between original plaintext and new 

plaintext. In our design, we decided against supporting 

zero-copy sendfile with TLS to avoid these problems. 
 
 

Figure 5. Authentication tag failure due to zero-copy sendfile 

retransmission with TLS crypto offload. 
 

Evaluation 

In Table 2, we present preliminary results of transmit side 

TLS offload. The test setup has two machines connected 

back-to-back. We compared between TCP, user space TLS 

(GNU TLS), kernel space TLS (kTLS) and kernel space 

TLS with offload. We used the AES128-GCM ciphersuite 

in all scenarios. We did not decrypt traffic on the receiving 

side, to prevent it from becoming a bottleneck. We used 

small TLS records of 1457 bytes.  

Using kTLS with offload we obtain 8.8Gbps, which is 

twice the throughput obtained by kTLS. 

 

 
Table 2. Preliminary performance evaluation of TLS offload. 
 

 

Conclusion 

We suggest a kernel API for TLS offloading, providing an 

initial performance evaluation. The TLS offload improves 

performance by at least 2x over current state-of-the-art 

kernel implementation, reducing per packet CPU overhead 

and enabling the use of encryption in high throughput. 

 

Future Work 

For receive side TLS offload, there are additional 

challenges. Packets cannot be delayed by hardware, thus 

some packets might be received unencrypted, while others 

could be decrypted. As in the transmit case, HW must be 

resynchronized following jumps in TCP sequence 

numbers. 
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