
TLS Offload to Network Devices

Boris Pismenny, Ilya Lesokhin, Liran Liss, Haggai Eran

Mellanox

Yokneam, Israel

{borisp, ilyal, liranl, haggaie}@mellanox.com

Abstract

Encrypted Internet traffic is becoming the norm, spearheaded by

the use Transport Layer Socket (TLS) to secure TCP connections.

This trend introduces a great challenge to data center servers, as

the symmetric encryption and authentication of TLS records adds

significant CPU overhead. New CPU capabilities, such as the x86

AES-NI instruction set, alleviate the problem, yet encryption

overhead remains high. Alternatively, cryptographic accelerators

require dedicated HW, consume significant memory bandwidth,

and increase latency. We propose to offload TLS symmetric

crypto processing to the network device. Our solution does not re-

quire a TCP Offload Engine (TOE). Rather, crypto processing is

moved to a kernel TLS module (kTLS [5,6]), which may leverage

inline TLS acceleration offered by network devices. Transmitted

packets of offloaded TLS connections pass through the stack un-

encrypted, and are processed on the fly by the device. Similarly,

received packets are decrypted by the device before being handed

off to the stack. We will describe the roles and requirements of

the kTLS module, specify the device offload APIs, and detail the

TLS processing flows. Finally, we will demonstrate the potential

performance benefits of network device TLS offloads.

Keywords

TLS Offload, Tx Offload, Network Devices, TLS, Crypto,

TCP.

 Introduction

In today’s networks, Transport Layer Security (TLS) is
widely used to securely connect endpoints both inside data
centers [1] and on the internet. TLS encrypts, decrypts, and
authenticates its data, but these operations incur a significant
overhead on the server.
Fixed function hardware accelerators are known to give

improved performance and greater power-efficiency when

compared to running a software implementation on a

general purpose CPU. Cryptographic operation such as

those used in TLS are very suitable for such hardware

accelerators but they are not widely used in the context of

networking. We believe that the reason is that the offload

model is not good enough.

Existing solutions fall into four categories:

 TLS Proxy – A middlebox [2] is used to de-

crypt/encrypt all incoming/outgoing traffic. The

middlebox is running a TCP connection against

trusted machines and a TLS connection against

untrusted machines, reducing the load on the

trusted machine. However, if applied inside the

data center, some traffic remains unprotected.

 TOE – TCP offload engines have been around for

a while [3]. A TOE could run a full TLS offload as

well reducing PCI traffic and freeing CPU cycles

even further. However, the TCP stack of TOE de-

vices is inflexible, and hard to debug and fix when

compared to a software TCP implementation.

Moreover, with full TLS offload, security vulnera-

bilities could remain unfixed for a long time.

 Crypto offload PCI card – A dedicated PCIe

card to accelerate cryptographic operations, such

as [4]. In the case of a PCIe card performing en-

cryption/decryption operation, the data is sent to-

wards the card over PCIe. It is then modified and

sent back for further processing. This can add a

significant latency to the operation, and is rela-

tively expensive in cost, power, PCIe lanes utili-

zation and CPU utilization.

 TLS in the kernel – Kernel TLS [5][6] is kernel

module for performing the bulk symmetric en-

cryption of TLS records by the kernel instead of

using a user space library. It facilities using send-

file for TLS connections. Moreover, where previ-

ously data was copied once during encryption and

once again to be sent by TCP, using this approach

encryption and data copy from user-space to the

kernel become a single operation. This approach

can leverage the x86 AES-NI instruction set for

accelerating AES operations.

Motivation

To motivate this work, we conducted a simple experiment
using 2 machines connected back-to-back running a TLS
session between the 2 machines. We run this experiment
twice: once using the AES128-GCM ciphersuite and once
again using the NULL ciphersuite. We obtained the results

presented in Table 1. We observe that the CPU utilization
was reduced by 85%, while throughput has increased,
reaching 10.4Gbps from 6.48Gbps. We argue that our model
for TLS offload would behave similarly to the NULL
ciphersuite on the CPU. We therefore believe that it would
benefit the community to offload TLS encryption to
hardware.

Table 1. Bandwidth and CPU comparison between a TLS socket

using the AES128-GCM ciphersuite and a TLS socket with the

NULL ciphersuite.

Model and Software Stack

In this paper, we propose a model (see Figure 1) where the
payload of network packets is transformed in-place by the
network device. This model retains all the benefits of using
a robust software network stack while offloading the crypto
data crunching to the device. The data need be sent only
once to the network device, saving PCIe BW and latency.
 In the proposed model, the keys used by the TLS socket
are offloaded to the NIC to which the connected socket is
routed. The socket is marked as offloaded. From this
moment onward packets of this TCP socket will be
encrypted by the device. The device expects software to
frame TLS packets, including TLS headers and trailers,
while skipping the actual encryption. The software must
place those packets into the offloaded socket. The rest of the
software stack remains unchanged: existing TCP/IP and
memory flows are unaffected. Existing TCP features such as
congestion control, retransmission, memory management,
and other enhancements in the TCP stack are all left
unchanged.

Figure 1. Kernel software stack for TLS offload. Kernel TLS

provides plaintext records to TCP, the TCP/IP stack segments the

records. Finally, the NIC encrypts plaintext records inside the TCP

segments.

TLS Offload API

In this section we outline the data path and the control path
for the TLS offload for the transmit side and suggest an API.
Ideally, in order to make hardware and software simple,
packets should be encrypted independently, as in the case of
IPsec[7], QUIC[8] and DTLS[9]. However, in TLS each
record is encrypted independently. A TLS record may be
spread over multiple TCP segments (see Figure 2), while a
TCP segment might also contain multiple TLS records.
Thus, intermediate record state between packets of a single
session must be tracked by the hardware to encrypt
subsequent packets which are part of a TLS record that
started on a previous TCP segment.

Figure 2. TLS Records split among multiple TCP packets.

Control Path

The control path is based on an extension of the

kTLS[5][6] control plane, where an additional flag is

added to indicate that offload is required.

In response to an offload request, kTLS calls

ktls_dev_add, a new NDO, for the netdevice used by that

socket. kTLS provides the socket and the crypto

parameters to ktls_dev_add as input. If the device can

offload this TLS session, the function returns success and

the socket is marked as offloaded by setting “sk-

>sk_tls_offload” for that socket. From this moment

onwards, any payload sent over that socket is expected to

be plaintext. The device will track TCP sequence numbers,

encrypt and authenticate all packets sent from this socket.

The sk_destruct function of the TCP socket is replaced

to free resources related to TLS in the socket layer.

Similarly, kTLS goes on to call another new NDO called

ktls_dev_del, in order to free device driver and hardware

resources.

Data Path
The data path consists of a fast path and a slow path. The

following pseudo code is performed by the device driver

for each packet:
1. Check packet belongs to offloaded socket (skb-

>sk->sk_tls_offload != 0)
a. If failed, goto normal packet transmit.

2. Check packet TCP sequence number against
expected TCP sequence number

a. If failed, perform resync (rebuild
hardware TLS context for the given
packet)

3. Send packet to be encrypted, authenticated and
sent to the network by the device.

First, the driver checks whether the socket is offloaded;

otherwise, normal packet processing takes over. Second,

the TCP sequence number is checked against the expected

TCP sequence number initialized when the socket was

offloaded. If the sequence numbers do not match, then the

slow path (resync) is triggered. Finally, the packet is sent to

the device to be encrypted, authenticated and sent to the

wire.

Resync Flow
As explained in above, the hardware has to track the crypto

context between TCP packets of an offloaded socket in

order to process them. It follows that, when the device

receives a TCP sequence number it does not expect (e.g.

during retransmission), then additional information is

required for the hardware to encrypt and authenticate the

packet.

To resynchronize hardware state, the prefix of the TLS

record is needed by the network device. This is sufficient

1 This is at least true for GNUTLS where the TLS record
sequence number and the IV are the same.

because each TLS record is encrypted and authenticated

independently of other TLS records1.

For example, in Figure 3, after transmitting packets P1-

7, packet P5 is retransmitted. The device has the state

required to encrypt packet P8. However, to encrypt packet

P5 the payload of TLS record 2 has to be passed to

hardware.

Figure 3. Packet P5 is retransmitted triggering the resync flow.

TLS record 2 is split among 3 TCP packets, some of

which could have been acknowledge and released from

memory. To enable the resync flow, the payload of partially

acknowledged TLS records must not be released from

memory. To prevent this, kTLS will take an additional

reference on all payload pages and TCP will call kTLS

during tcp_clean_rtx_queue() to release acknowledged

TLS records.

Additionally, kTLS provides a mapping from TCP

sequence numbers to the TLS record payload. This

mapping is exposed to the device driver. The driver uses

this mapping during the resync flow. For example, in

Figure 4, the resync flow for SKB 2 queries kTLS for the

mapping of the TCP sequence number of SKB2, in order to

acquire the payload of TLS Record 1.

Figure 4. The use of a mapping from SKB2 TCP sequence number

to the payload of TLS record 1.

Zero-Copy Sendfile

With crypto offload it would have been possible to enable

zero-copy sendfile functionallity, which is not possible

without crypto offload. Similarly to the way sendfile works

with TCP sockets. However, with TLS there is an

undesirable side-effect that occurs during retransmissions.

If the data being transmitted is dropped and the new data is

different, then the crypto offload would rencrypt the new

data as part of a previously transmitted TLS record.

Resulting in authentication tag failure on the receiving

side, as described in figure 5. Another problem, is that with

AES-GCM, a counter mode cipher, the data retransmitted

will use the same counter with different plaintext. This

enables an attacker to XOR the ciphertext transmitted with

ciphertext retransmitted, resulting in the elimination of the

keystream, i.e. a XOR between original plaintext and new

plaintext. In our design, we decided against supporting

zero-copy sendfile with TLS to avoid these problems.

Figure 5. Authentication tag failure due to zero-copy sendfile

retransmission with TLS crypto offload.

Evaluation

In Table 2, we present preliminary results of transmit side

TLS offload. The test setup has two machines connected

back-to-back. We compared between TCP, user space TLS

(GNU TLS), kernel space TLS (kTLS) and kernel space

TLS with offload. We used the AES128-GCM ciphersuite

in all scenarios. We did not decrypt traffic on the receiving

side, to prevent it from becoming a bottleneck. We used

small TLS records of 1457 bytes.

Using kTLS with offload we obtain 8.8Gbps, which is

twice the throughput obtained by kTLS.

Table 2. Preliminary performance evaluation of TLS offload.

Conclusion

We suggest a kernel API for TLS offloading, providing an

initial performance evaluation. The TLS offload improves

performance by at least 2x over current state-of-the-art

kernel implementation, reducing per packet CPU overhead

and enabling the use of encryption in high throughput.

Future Work

For receive side TLS offload, there are additional

challenges. Packets cannot be delayed by hardware, thus

some packets might be received unencrypted, while others

could be decrypted. As in the transmit case, HW must be

resynchronized following jumps in TCP sequence

numbers.

References
1. “The Fully Encrypted Data Center”, Oracle Technical
White Paper, accessed September 22, 2016,
http://www.oracle.com/technetwork/server-
storage/hardware-solutions/fully-encrypted-datacenter-
2715841.pdf

2. “Server Farm Security in the Business Ready Data
Center Architecture”, Cisco design guide, Chapter 6
“Catalyst SSL Services Module Deployment in the Data
Center with Back-End Encryption”
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/
Data_Center/ServerFarmSec_2-
1/ServSecDC/DC_Pref.html

3. “Why TOE is bad?”, accessed September 22, 2016.
https://wiki.linuxfoundation.org/networking/toe

4. “Intel QuickAssist”, accessed September 22, 2016.
http://www.intel.com/content/dam/www/public/us/en/doc-

uments/product-briefs/quickassist-adapter-8950-brief.pdf

5. Optimizing TLS for “High-Bandwidth” Applications in
FreeBSD, R. Stewart, et. al. accessed September 22, 2016.
https://people.freebsd.org/~rrs/asiabsd_2015_tls.pdf

6. Crypto Kernel TLS socket, D. Watson, accessed
September 22, 2016.
https://lwn.net/Articles/665602/

7. RFC 4303: IP Encapsulation Security Payload (ESP), S.
Kent, accessed November 1, 2016,
https://www.ietf.org/rfc/rfc4303.txt

8. QUIC: A UDP-Based Secure and Reliable Transport for
HTTP/2 draft-hamilton-early-deployment-quic-00, J.
Iyengar, et. al. accessed November 1, 2016.
https://tools.ietf.org/html/draft-hamilton-early-deployment-
quic-00

9. RFC 6347: Datagram Transport Layer Security Version
1.2, E. Rescorla, accessed November 1, 2016.
https://tools.ietf.org/html/rfc6347

http://www.oracle.com/technetwork/server-storage/hardware-solutions/fully-encrypted-datacenter-2715841.pdf
http://www.oracle.com/technetwork/server-storage/hardware-solutions/fully-encrypted-datacenter-2715841.pdf
http://www.oracle.com/technetwork/server-storage/hardware-solutions/fully-encrypted-datacenter-2715841.pdf
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/ServerFarmSec_2-1/ServSecDC/DC_Pref.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/ServerFarmSec_2-1/ServSecDC/DC_Pref.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/ServerFarmSec_2-1/ServSecDC/DC_Pref.html
https://wiki.linuxfoundation.org/networking/toe
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/quickassist-adapter-8950-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/quickassist-adapter-8950-brief.pdf
https://people.freebsd.org/~rrs/asiabsd_2015_tls.pdf
https://lwn.net/Articles/665602/
https://www.ietf.org/rfc/rfc4303.txt
https://tools.ietf.org/html/draft-hamilton-early-deployment-quic-00
https://tools.ietf.org/html/draft-hamilton-early-deployment-quic-00
https://tools.ietf.org/html/rfc6347

