
Busy Polling: Past, Present, Future

Eric Dumazet
Google

edumazet@google.com
netdev 2.1 Montreal 2017

Abstract

Traditional model for networking in linux and other unixes is
based on interrupts being generated by devices, and being ser-
viced from different layers depending on various constraints.
While this gave good results years ago when CPU resources
were scarce, we very often hit pathological behaviors needing
painful tuning.
Linux NAPI model added a generic layer helping both
throughput and fairness among devices, at the cost of jitter.
Busy Polling was added in 2013 as an alternative model where
user application thread was opportunistically going to poll the
device, burning cycles and potentially avoiding the interrupts
latencies.
As of today (linux-4.12), Busy Polling is still an application
choice, that has practical limitations.
In this paper I will present Busy Polling history and its limita-
tions.
Then I will propose ideas to shift busy polling decision in the
hands of system administrators, allowing to precisely budget
cpu cycles burnt by Busy Polling and allow for its wider use.

Busy Polling in a nutshell
Jesse Brandeburg presented initial ideas in LPC 2012[2].
Initial name was LLS (Low Latency Sockets)
Principal sources of latencies/jitter are :

• Scheduling / Context Switching
• Interrupt Moderation
• Interrupt Affinity
• Power Management
• Resources sharing (caches, bus)

By no longer waiting for device interrupts being gener-
ated/handled, and polling driver/device queues, we can avoid
context switches, keep CPU in C0 state, and immediately re-
act to packet arrival, on the proper cpu (regardless of CPU
IRQ affinities)
Idea was to let the application thread calling a recv() sys-
tem call or any other socket call that would normally have to
wait for incoming messages directly call a new device driver
method and pull packets. This would be done in a loop,
bounded by a variable time budget.

Busy Polling History
Eliezer Tamir submitted first rounds of patches[11] for
linux-3.11.

The patch set demonstrated significant gains on selected
hardware (Intel ixgbe) and was followed by few drivers
changes to support the new driver method, initially called
ndo_ll_poll() and quickly renamed into ndo_busy_poll().

Dmitry Kravkov added bnx2x support in linux-3.11

Amir Vadai added mlx4 support in linux-3.11

Hyong-Youb Kim added myri10ge support in linux-3.12

Sathya Perla added be2net support in linux-3.13

Jacob Keller added ixgbevf support in linux-3.13

Govindarajulu Varadarajan added enic support in linux-
3.17

Alexandre Rames added sfc support in linux-3.17

Hariprasad Shenai added cxgb4 support in linux-4.0

Busy polling was tested for TCP and connected UDP
sockets, using standard system calls : recv() and friends,
poll() and select()

Results were magnified by quite high interrupt coalescing
(ethtool -c) parameters that favored cpu cycles savings at ex-
pense of latencies.

mlx4 for example had following defaults:

rx-usecs: 16
rx-frames: 44

TCP_RR (1 byte payload each way) on 10Gbit NIC would
show 17500 transactions per second without busy polling,
and 63000 with busy polling.

Even reducing rx-usecs to 1 and rx-frames to 1, we would
only reach 37000 transactions per second.



Socket Interface
Two global sysctls were added in µs units :
/proc/sys/net/core/busy_read
/proc/sys/net/core/busy_poll

Suggested settings are in the 50 to 100 µs range.
Their use is very limited, since they enforce busy polling

for all sockets, which is not desirable. They provide quick
and dirty way to test busy polling with legacy programs on
dedicated hosts.

SO_BUSY_POLL is a socket option, that allows precise en-
abling of busy polling, although its use is restricted to
CAP_NET_ADMIN capability.

This limitation came from initial busy polling design, since
we were disabling software interrupts (BH) for the duration of
the busy polling enabled system call. We might relax this lim-
itation since we now have proper scheduling points in busy
polling.

linux-4.5 changes
In linux-4.5, sk_busy_loop() was changed to let BH being
serviced[5]. Main idea was that if we were burning cpu cy-
cles, we could at the same time spend them for more useful
stuff, that would have added extra latencies anyway right be-
fore returning from the system call. Some drivers (eg mlx4)
use different NAPI contexts for RX and TX, this change per-
mitted to handle TX completions smoothly.

Another step was to make ndo_busy_poll() optional, and
use existing NAPI logic instead. mlx5[4] driver got busy
polling support by this way.

Also note that we no longer had to disable GRO on inter-
faces to get lowest latencies, as first driver implementations
did. This is important on high speed NIC, since GRO is a key
to decent performance of TCP stack.

ndo_busy_poll() implementation in drivers required the
use of an extra synchronization between the regular NAPI
logic (hard interrupt > napi_schedule() > napi poll()) and the
ndo_busy_poll(). This extra synchronization required one
or two extra atomic operation in the non-busy-polling fast
path, which was unfortunate. The naive implementations
first used a dedicated spinlock, then Alexander Duyck used
a cmpxchg()[7]

linux-4.10 changes
In linux-4.10, we enabled busy polling for unconnected UDP
sockets, in some cases.

We also changed napi_complete_done() to return a
boolean as shown in Figure 1, allowing a driver to not rearm
interrupts if busy polling is controlling NAPI logic.

linux-4.11 changes
In linux-4.11, we finally got rid of all ndo_busy_poll() im-
plementations in drivers and in core[6].
Busy Polling is now a core NAPI infrastructure, requiring no
special support from NAPI drivers.

Performance gradually increased, at least on mlx4, going
from 63000 on linux-3.11 (when first LLS patches were ap-
plied) to 77000 TCP_RR transactions per second.

done = mlx4_en_process_rx_cq(dev, cq, budget);
if (done < budget &&

napi_complete_done(napi, done))
mlx4_en_arm_cq(priv, cq);

return done;

Figure 1: Using napi_complete_done() return value

linux-4.12 changes
In linux-4.12, epoll()[9] support was added by Sridhar Samu-
drala and Alexander Duyck, with the assumption that an ap-
plication using epoll() and busy polling would first make sure
that it would classify sockets based on their receive queue
(NAPI ID), and use at least one epoll fd per receive queue.
SO_INCOMING_NAPI_ID was added as a new socket option to
retrieve this information, instead of relying on other mecha-
nisms (CPU or NUMA identifications).
Ideally, we should add eBPF support so that SO_REUSEPORT
enabled listeners can choose the appropriate silo (per RX
queue listener) directly at SYN time, using an appropri-
ate SO_ATTACH_REUSEPORT_EBPF program. Same eBPF filter
would apply for UDP traffic.

Lessons learned
Since LLS effort came from Intel, we accepted quite invasive
code in drivers to demonstrate possible gains. It took years to
come up to a core implementation and remove the leftovers,
mostly because of lack of interest or time.

Another big problem is that Busy Polling was not really
deployed in production, because it works well when having
no more than one thread per NIC RX queue.

If too many applications want to simultaneously use Busy
Polling, then process scheduler takes over and has to arbitrate
among all these cpu hungry threads, adding back jitter issues.

What’s next
Paolo Abeni and Hannes Frederic Sowa presented[1] a
patch introducing kthreads to handle a device NAPI poll in a
tight loop, in an attempt to cope with softirq/ksoftirq defaults.

Zach Brown asked in an email[3] sent to netdev if there
was a way to get NAPI poll all the time.

While this is doable by having a dummy application
looping on a recv() system call on properly setup socket(s),
we probably can implement something better.

This mail, plus some discussions we had in netdev 1.2
made me work again on Busy Polling (starting in linux-4.10
as mentioned above).

Various techniques are used to speed up networking stacks.



• RPS, RFS, XPS

• XDP

• special memory allocation paths

• page recycling in RX path.

• replacing table driven decisions by ePBF

But in all cases, we still have the traditional model where
the current cpu, traverse all layers from the application to the
hardware access.

Example at transmit :

sendmsg()
fd lookup
tcp_sendmsg()
skb allocation
copy user data to kernel space
tcp_write_xmit() (sk->sk_wmem_alloc)
IP layer (skb->dst->__refcnt)
qdisc enqueue
qdisc dequeue (qdisc_run())
grab device lock.
dev_queue_xmit()
ndo_start_xmit()
roll back all the way down to user application

With SMP, we added many spinlocks and atomics in order
to protect the data structures and communication channels,
since any point in the kernel could be reached by any number
of cpus. Multi Queue NIC and spinlock contention avoidance
naturally lead us to use one queue per cpu, or a significant
number of queues.

Increasing number of queues had the side effect of reduc-
ing NAPI batching. Number of packets per hard interrupt
decreased, and many experts complain about enormous
amount of cpu cycles spent in softirq handlers. It has been
shown that driving a 40Gbit NIC with small packets on
100,000 TCP sockets could consume 25 % of cpu cycles on
hosts with 44 queues with high tail latencies.

It is worth noting that number of core/threads is increas-
ing, but L1/L2 caches sizes are not changing. Typical L1 are
32KB, and L2 are 256 KB. When all cpus are potentially run-
ning all kernel networking code paths, their caches are con-
stantly overwritten by kernel text/data.

Break the pipe !
General idea is to break the pipeline and run some of the
stages using dedicated and provisioned cores. This is com-
monly used in NPU architectures (Network Processor Units).
Main difference here is that would be optional only. Most
linux driven hosts would not use this mode.

We could more easily bound cpu cycles used by parts
of IP/TCP/UDP stacks, and not interrupt anymore cpus that
would run application code, with higher cpu cache utilization.

Busy Polling CPU group
We need to create groups of cpus, preferably by their NUMA
locality.

Then attach cpus to groups or detach them. It is probable
we need cooperation from process scheduler, because we do
not want these cpus being part of a normal scheduling do-
main. The group would have the ability of parking cpus to
low power mode, and activate them only on demand. On low
load, only one cpu per group would be busy polling.

RX or TX path
We need to expose each NAPI in the system in sysfs, so that
it can be added to a CPU group (or removed)

The operation would grab the NAPI_STATE_SCHED bit for-
ever, automatically disabling the device interrupts.

Available cores in the CPU group would then service the
NAPI poll.

Some device drivers use one NAPI per queue, handling
both RX and TX. Others use separate NAPI structures (eg
mlx4 driver)

Admins should be aware to attach properly all relevant
NAPI.

RX path
When driver napi->poll() is called from the Busy Poller
group, it would naturally handle incoming packets, deliver-
ing them to another queues, being sockets or a qdisc/device.
XDP, if enabled, would be transparently be handled. No
change should be needed in drivers.

Note that the current busy polling infra would con-
tinue to work, since the application would still spinning on
its receive queue, or event poll queue, if could not grab
NAPI_STATE_SCHED.

TX path
When a napi->poll() handles TX completions from
Busy Polling group, we ideally would permanently
grab qdisc->running (cf qdisc_run_begin()). The de-
queues from qdisc and calls to dev_queue_xmit() and
ndo_start_xmit() would then no longer be done by applica-
tion threads.

qdisc_run() is a well known source of latencies, as a
thread (even a Real Time one) might be trapped in its loop,
dequeueing packets queued by other applications.

With Busy Polling, we could eventually always defer the
doorbell, regardless of xmit_more[8] status, knowing that we
will soon either provide another packet or send the doorbell
after few empty rounds. This last part would require a change
in a driver ndo_start_xmit().

Challenges
Normal network stacks uses timers, RCU callbacks, work
queues, software irqs in general. In particular, RFS[10] could
still be used. Cpus in Busy Polling groups still need to service
softirqs, and potentially yield to other threads. They will be
implemented as kernel threads, bounded to cpus.
To keep cpu caches really hot, we could dryrun code paths
even if no packet has to be processed. For example, pre-
allocating or touching the napi->skb could avoid some cache
evictions.



Thanks
Many thanks to Jesse Brandeburg, Eliezer Tamir, Alexander
Duyck, Sridhar Samudrala, Willem de Bruijn, Paolo Abeni,
Hannes Frederic Sowa, Zach Brown, Tom Herbert, David S.
Miller and others for their work and ideas.

References
[1] Abeni, P. 2016. net: implement threaded-able napi poll

loop support. https://patchwork.ozlabs.org/patch/620657/.
[2] Brandeburg, J. 2012. A way towards

lower latency and jitter. Retrieved from
http://www.linuxplumbersconf.org/2012/wp-
content/uploads/2012/09/2012-lpc-Low-Latency-Sockets-
slides-brandeburg.pdf.

[3] Brown, Z. 2016. Pure polling mode for netdevices.
Archived at https://lkml.org/lkml/2016/10/21/784.

[4] Dumazet, E. 2015a. mlx5: add busy polling support.
commit 7ae92ae588c9f78006c106bb3398d50274c5d7de.

[5] Dumazet, E. 2015b. net: allow bh
servicing in sk_busy_loop(). commit
2a028ecb76497d05e5cd4e3e8b09d965cac2e3f1.

[6] Dumazet, E. 2017. net: remove sup-
port for per driver ndo_busy_poll(). commit
79e7fff47b7bb4124ef970a13eac4fdeddd1fc25.

[7] Duyck, A. 2014. ixgbe: Refactor busy poll
socket code to address multiple issues. commit
adc810900a703ee78fe88fd65e086d359fec04b2.

[8] Miller, D. S. 2014. Bulk network packet transmission.
https://lwn.net/Articles/615238/.

[9] Samudrala, S. 2017. epoll: Add busy poll
support to epoll with socket fds. commit
bf3b9f6372c45b0fbf24d86b8794910d20170017.

[10] Scaling in the linux networking stack.
https://www.kernel.org/doc/Documentation/networking/scaling.txt.

[11] Tamir, E. 2013. Merge branch ’ll_poll’. commit
0a4db187a999c4a715bf56b8ab6c4705b524e4bb.


