
sendmsg copy avoidance with MSG_ZEROCOPY

Willem de Bruijn Eric Dumazet
willemb@google.com edumazet@google.com

Abstract

Copy avoidance can save many cycles for large production
workloads such as storage servers. Linux offers various copy
avoidance mechanisms, such as sendfile, vmsplice and virtio
zerocopy. We review these existing interfaces and introduce
a copy avoidance interface for generic socket communication.
Processes converted to this MSG_ZEROCOPY interface see a cy-
cle reduction ranging from 92% of process cycles (39% sys-
temwide) for a netperf micro- benchmark to 5-8% for lightly
modified production workloads in machine learning and con-
tent delivery.
The feature combines a send() flag with a completion notifica-
tion channel over the socket error queue. Aside from introduc-
ing the interface, we focus on technical constraints. Primarily,
supporting complex protocols like TCP, where segmentation,
retransmission and reordering introduce a non-trivial relation-
ship between user buffers and packets on the wire. To handle
these, completion notification requires careful reference count-
ing across the transmit stack. Other concerns are bounding no-
tification latency and working set size, avoiding TOCTTOU
attacks with shared read-write page mappings and amortizing
the cost of notification processing over the socket error queue.

Introduction
Applications that handle large data streams, such as storage
and content delivery, can end up spending most time copying
data around. A simple netperf stream can spend 79% of its
cycles in copy_user_generic_string, as shown in the ex-
periments section.

Shared memory is a popular alternative. Userspace de-
vice drivers move all processing into the application address
space, but do so at the cost of losing operating system safety,
abstraction and resource multiplexing. Copy avoidance re-
places copies in existing datapaths with pinned pages. The
Linux kernel exposes a number of copy avoidance mecha-
nisms across subsystems.

The sendfile system call allows processes to move data
from the page cache in the kernel to another file, pipe or
socket without having to copy the data first into the process
and then back to the kernel. For network transmission, the
page cache fragments are linked directly into the skbuff’s
frags[] array. The skbuff takes a reference on the page to
ensure that it is not removed from the page cache. It does not
restrict the page contents from being updated. The skbuff

is marked with flag SKBTX_SHARED_FRAG. Where payload ac-
cess is necessary, such as on checksum generation, this flag
is checked and if found set, shared pages are replaced with
private copies.

The splice [3] system call extends copy free transfer of
data from page cache entries to more generic kernel buffers
represented as unix pipes. A process can move data between
pipes, files and sockets by calling splice with the two file
descriptors and the SPLICE_F_MOVE option. vmsplice adds
the ability of splicing user data into a pipe in the kernel with-
out copying. User pages are pinned while contents is in use
in the kernel. Subsequent splicing of data from this pipe to
another pipe, socket or file by default causes a copy. But, if
vmsplice is called with flag SPLICE_F_GIFT, then the kernel
will forward the page fragments without copying.

A page inserted with the gift option must not be modified
while it is in use in the kernel. Indeed, the vmsplice manual
page states that a buffer passed with the gift flag may never
be reused by the process. A page that is passed to the kernel
and moved to a socket for transmission will see any changes
made to the page page inbetween vmsplice and copy to the
device local buffer reflected on the wire.

The vmsplice interface does not notify the caller when it is
safe to modify page contents. Applications using this mecha-
nism for networking often do reuse memory, relying on other
methods to detect whether data has been sent, such as polling
the SIOCOUTQ ioctl. Such methods are imprecise and error-
prone. An empty transmit queue does not indicate that data
has left the machine. Packets may be waiting in the device
transmit queue, for instance, or a clone can be mirrored to a
packet socket if a tcpdump instance is running.

Another copy avoidance path within the kernel itself shows
how completion notifications can be implemented. virtio
zerocopy [4] avoids the copy on transmission from guest vir-
tual memory to packet buffers in the host transmit stack. The
vhost-net driver emulates a guest network device in the host
kernel. It has access to shared guest memory and the virtio
transmit descriptor ring. The driver moves data from guest
buffers into the standard host transmit path by sending over a
kernel tuntap socket. To call the tuntap send path it converts
descriptors into a msghdr with data iov io vector array. Un-
like user processes, the driver then calls sendmsg as a function
call from with the host kernel to pass data to the tun driver in
the same address space. In copy avoidance mode, this func-

ret = send(fd, buf, sizeof(buf), MSG_ZEROCOPY);
if (ret != sizeof(buf))

error(1, errno, "send");

pfd.fd = fd;
pfd.events = 0;
if (poll(&pfd, 1, -1) != 1 ||

pfd.revents & POLLERR == 0)
error(1, errno, "poll");

ret = recvmsg(fd, &msg, MSG_ERRQUEUE);
if (ret == -1)

error(1, errno, "recvmsg");

read_notification(msg);

Figure 1: Using the MSG_ZEROCOPY interface

tion has been modified to replace copying with building an
skbuff that directly references the pointers in the io vector.
The reference count on each page linked into the skbuff ar-
ray is incremented, as destruction of the skbuff fragment ar-
ray will later decrement this count. To notify the vhost driver
of completion of the zerocopy operation, the tun driver em-
beds a pointer to a callback function into the skbuff.

Socket Interface
MSG_ZEROCOPY introduces a copy avoidance interface for stan-
dard socket communication. The feature is implemented for
communication with remote peers over TCP, UDP and RAW
and packet sockets. The implementation builds on the virtio
copy avoidance infrastructure.

The change to send is minimal. Passing the new flag
MSG_ZEROCOPY requests direct transmission of shared user
pages. In this case the kernel pins the user pages and cre-
ates skbuff fragments directly from these pages. Similar to
SPLICE_F_GIFT, contents must not be modified once the send
call commences, or changes may be reflected in the packets
on the wire.

Completion Notifications
The interface includes a completion notification interface to
let the send process know when it is safe to reuse memory.
The kernel already has an interface for notifying a process
asynchronously of socket events. The transmit timestamp in-
terface queues a timestamp for a packet (or range of TCP
bytestream) on the socket error queue. A hardware tx times-
tamp requested with SOF_TIMESTAMPING_TX_HARDWARE acts
as a transmit completion notification.

The transmit timestamp is queued onto the error queue
with a copy of the original packet to be able to associate
timestamps with the original send request. Copying all this
data is expensive, however, and not always unambiguous.
Timestamp option SOF_TIMESTAMPING_OPT_ID queues a per-
socket identifier alongside the data and timestamp. Each send
call requesting a timestamping increases a per-socket counter.
The current value of the counter is queued in the skbuff

while in transit and returned alongside the timestamp. The
value identifier unambiguously the original call, so sending
packet payload back up to userspace is no longer needed. Op-
tion SOF_TIMESTAMPING_OPT_TSONLY queues only the identi-
fier and timestamp.

Zerocopy notifications are not transmit notifications. A
packet can be transmitted while a clone of the same data is
queued elsewhere in the network stack. The transmit times-
tamp interface cannot be used as is, therefore. But it is analo-
gous to the TSONLY mode.

A zerocopy completion notification message is a simple
scalar value that identifies the system call whose data has
been sent. Each socket maintains an internal 32-bit counter.
Each send call with flag MSG_ZEROCOPY that successfully
sends data increments the counter. The counter is not incre-
mented on failure or if called with length zero.

Notifications are queued asynchronously on the socket er-
ror queue. When the last reference to the packet fragment ar-
ray is released, a callback function is triggered, similar to the
virtio case. In this case, the callback action is to queue the
scalar value associated with the packet onto the error queue.

Figure 1 demonstrates the API. In the simplest case, each
send syscall is followed by a poll and recvmsg on the er-
ror queue. Reading from the error queue is always a non-
blocking operation. The poll call will block until an error is
outstanding and will set POLLERR in its output flags. That flag
does not have to be set in its events field: errors are signaled
unconditionally.

The example is for demonstration purpose only. In prac-
tice, it is much more efficient to not wait for notifications, but
read without blocking every couple of send calls. Notifica-
tions can be processed out of order with other operations on
the socket. A socket that has an error queued would normally
block other operations until the error is read. But zerocopy
notifications have a zero error code, and do not block send
and other calls.

Multiple outstanding packets can be read at once using the
recvmmsg call. This is often not needed. The notification
interface can coalesce multiple scalar values onto a single
range-based message.

Figure 2 demonstrates how to parse the control message. A
notification follows the standard format of an error on the er-
ror queue. Information about the error can be read alongside
the packet contents as a msg_control control message. For
zerocopy notifications, the packet in msg_data itself is empty.
The level and type fields in the control data are protocol fam-
ily specific and differ between IPv4, IPv6 and packet sock-
ets. If of the family-specific error type, such as IP_RECVERR,
then embedded is a sock_extended_err structure. For zero-
copy notifications, error origin is SO_EE_ORIGIN_ZEROCOPY.
ee_errno is zero, as explained, to avoid blocking other sys-
tem calls on this socket. ee_data and ee_info fields each
hold a completion value. The messages returns not a single
completion event, but range [ee_info,ee_data]. The exam-
ple code in the figure ignores the lower end for simplicity.
Other fields in the struct must be treated as undefined.

Notification processing is one reason why copy avoidance
is not always more efficient than copying, especially not for
small packets. The experiments section demonstrates this

uint32_t read_notification(struct msghdr *msg)
{

struct sock_extended_err *serr;
struct cmsghdr *cm;

cm = CMSG_FIRSTHDR(msg);
if (cm->cmsg_level != SOL_IP &&

cm->cmsg_type != IP_RECVERR)
error(1, 0, "cmsg");

serr = (void *) CMSG_DATA(cm);
if (serr->ee_errno != 0 ||

serr->ee_origin != SO_EE_ORIGIN_ZEROCOPY)
error(1, 0, "serr");

return serr->ee_data;
}

Figure 2: Reading a completion notification

with a micro-benchmark at various send sizes. Many real
workloads will have a mixture of both large and small buffers.
A common example is combining small application protocol
headers with larger payloads from a user cache. The interface
supports mixing send calls that have the MSG_ZEROCOPY flag
set with those without for this reason. The completion notifi-
cation counter only increments on calls with the flag set.

Revert to Copy
Copy avoidance is not always possible. Devices that do not
support scatter-gather I/O cannot not send packets consisting
of kernel protocol headers and user payload. Other limita-
tions are not immediately apparent at send time. A packet
may need to be converted to having private pages deep in the
stack, for instance to compute a checksum. In all these cases,
the kernel returns a completion notification when it releases
hold on the shared pages. It has to, because the process has
no other way of learning when it is safe to reuse memory.
In these cases, the notification may arrive before the (copied)
data is fully transmitted. A zerocopy completion notification
is not a transmit completion notification, therefore.

Implementation
MSG_ZEROCOPY builds on the zerocopy virtio infrastructure.
On send, user pages are pinned to ensure that they ex-
ist for the duration of transmission. They are linked into
the fragment array of the skbuff and the skbuff trans-
mit flag SKB_DEV_ZEROCOPY is set. This flag and the array
are, strictly speaking, stored in the skb_shared_info seg-
ment and thus shared with all clones of a packet. On de-
struction of the shared data, the kernel tests the zerocopy
flag and, if set, calls a callback function hung off of field
skb_shinfo(skb)->destructor_arg. That pointer points to
a struct of type ubuf_info. That structure stores, besides the
callback function pointer, stores the argument to return (the
notification range) and state needed at runtime, such as a ref-
erence counter.

Reference counting

The transmit stack can clone packets. A listening tcpdump
process will cause a clone to be queued for reception, for in-
stance. This particular case will trigger a copy that converts
the packet to one with private fragments for reasons discussed
in the security section. But not all clones can be converted to a
copy. TCP keeps buffers queued for retransmission until they
are acknowledged. When the TCP stack transmits a packet,
this is a clone of the one kept on the queue. Triggering a
deep copy on every clone precludes supporting TCP, there-
fore. Accounting for clones is straightforward. All clones
share the same skb_shinfo(skb) and this shared region is
reference counted and freed only when the last clone is re-
leased. In normal operation for TCP this will be on reception
of the ACK.

Note that it is not safe to simply wait for an incoming ACK
to test whether shared memory is no longer in use in the ker-
nel. Such a strategy is no safer than the SIOCOUTQ trick.
ACK packets can be spoofed by a malicious peer or man-
in-the-middle. Even without malicious intent, an ACK may
arrive for a packet while it is in the process of being retrans-
mitted. In that case a clone exists in the transmit stack, while
the one on the transmit queue is freed.

The packet in the retransmit queue and the packet being
transmitted are not necessarily identical. Generic segmen-
tation offload (GSO), for instance, breaks a large packet up
into a train of smaller MTU-sized packets. All these pack-
ets must be associated with the original system call: its
scalar value must only be queued on the error queue when
all these packets have been sent and freed. For this reason,
the ubuf_info maintains a reference count independent from
the skb_shared_info one.

Bytestream Packetization of the TCP bytestream further
complicates this relationship of packets on the wire to buffers
passed to send. GSO maintains a 1:M relationship with a
large packet, but not necessarily with any buffer originally
passed to send.

A single system call can send many Megabytes and thus
generate many packets. Exact packetization depends on state
such as path MTU, so cannot be predicted by the calling pro-
cess. To maintain the simple syscall counter notification in-
terface, a notification may only be queued once all packets
have been sent and acknowledged, so all point to the same
ubuf_info.

Packetization can span across system calls. That is, a single
skbuff can embed data from two or more consecutive send
calls. If a packet is already queued for transmission and not
too large, TCP will try to append new data to that in the sub-
sequent send call. In that case, a single packet will point to
data from multiple system calls, so must queue as many noti-
fication values. To avoid having an M:N relationship between
skbuff and ubuf_info, and a list of pointers for each skbuff,
struct ubuf_info stores a range instead of a scalar.

UDP is conceptually much simpler than TCP, but the same
range based notification is used here, too, for corking.

Completion Notification
Notifications must be delivered under all circumstances,
which places additional constraints on the implementation.

Allocation During memory pressure, the allocation of a no-
tification skb can fail. The notification skb must therefore be
allocated immediately in the original send system call and
that call must fail if the allocation fails.

The zerocopy lifecycle uses two objects. The ubuf_info
to account pages while shared and the notification skbuff to
queue a value once they are released. To save one allocation at
send time, the two share the same storage. The smaller struct
fits in skb->cb[], avoiding the need for a separate kmalloc.

The structures are allocated from socket optmem to avoid
interfering with accounting of normal transmit and receive
paths, and feedback loops that depends on these. Trans-
mission, in particular, is sensitive to allocation. TCP small
queues limits the amount of data in the stack based on out-
standing send buffers.

Socket Lookup When it is time to queue a notification,
in general this can be looked up from the socket pointer in
the skbuff that is being freed. But if that skbuff was or-
phaned, the socket reference has already been released. For
this reason ubuf_info must maintain a private reference on
the socket. If it finds that it holds the last reference on the
socket at notification time, the notification is dropped as it
will never be read.

Coalescing Notification processing is a potentially expen-
sive operation. Coalescing can significantly reduce this cost.
A process can delay notification processing to read multiple
notifications in batch with recvmmsg and individual notifica-
tions may contain a range.

The kernel also coalesces consecutive notifications. When
a notification is about to be enqueued, it checks whether the
new range extends the range of the notification at the tail
of the notification queue. If so, it drops the new notifica-
tion packet and instead increases the range upper value (field
ee_data) of the outstanding notification. For protocols that
acknowledge data in-order, like TCP, each notification can
be squashed into the previous so that no more than one no-
tification is outstanding at any one point while the socket is
connected.

Ordered delivery is not ensured for unreliable protocols
such as UDP, nor for TCP on socket teardown. When that
happens, the skbuffs on the transmit queue are all purged and
any unsent packets trigger an immediate notification. Packets
that have a clone in the transmit stack, however, will wait until
that clone is freed, causing out-of-order completion arrival.

Security
It must not be possible for a malicious process to circumvent
access control by changing the data between policy enforce-
ment and use, a classic TOCTTOU attack. For network trans-
mission, a packet must not be able to evade packet payload
filters.

Most operations are on packet headers only, and headers
are never stored in shared memory. The Linux network stack
expects headers to lie in the linear segment (skb->head).

MSG_ZEROCOPY only places shared pages in the frags array.
For most protocols, the headers are generated by the kernel.
Even where not, as in packet sockets, the initial bytes up to
MAX_HEADER or packet size, whichever is smaller, are copied
into the private linear segment. Small packets, as a result, are
completely copied, even when the copy avoidance flag is set.
This is another example where a notification must be queued
even when zerocopy is inactive, and a reason for using the
feature only on large send requests.

Most operations in the transmit stack only touch headers,
but there are a few notable exceptions that must be handled
safely. At entry to all these codepaths, the stack can convert
a skbuff with shared fragments to one with a private copy
by calling skb_orphan_frags. This tests whether the packet
has shared pages and if so converts them to private copies by
calling skb_copy_ubufs.

Checksum Generation Checksum generation is the canon-
ical example. Modifying payload after checksum generation
does not affect the integrity of the system. A process can only
hamper its own communication. But copy avoidance is not an
effective performance optimization if payload has to be read
for checksum generation. When the two operations happen
together, the data is warm in the cache and the copy operation
is essentially free: this is the basis of the checksum-and-copy
optimization in Linux system calls. Copy avoidance is dis-
abled, therefore, if the checksum operation is not offloaded to
hardware.

With hardware checksum generation, the device copies
host memory to local buffers before computing the check-
sum. The operation is not atomic, but a host process cannot
modify bytes after they have been checksummed. The copy
from host to device memory protects against all such vulnera-
bilities to concurrent memory access that a device may have.
Device implementations may vary in principle, but this is a
well tested solution. The sendfile interface has shared pages
from the page cache with devices for a long time.

Encryption Cryptographic operations are increasingly
common in the datapath. The same hardware offload argu-
ment holds, but the potential vulnerability is more subtle.
Block ciphers convert the raw symmetric key to a different
key on each block. If plaintext is modified between retrans-
mission, two different plaintext blocks will be encoded with
the same key, leaking some information. For this reason, and
because encryption is again a data touching operation which
obviates the benefit of copy avoidance, a deep copy must be
made if zerocopy packets enter the IPSec transmit path.

Deep Packet Inspection The administrator can insert in-
creasingly powerful programmable filters in the transmit path.
The bpf and u32 programs can be called from iptables and the
packet scheduler to make policy decisions on any bytes in the
payload. If payload can be changed after passing these hooks,
a malicious process could bypass security policy.

Reliability
Resource exhaustion is another concern when pinning mem-
ory pages. To protect machine integrity, unprivileged users
must not be able to pin an unlimited number of pages. The

implementation bounds the number of pages for unprivileged
users to an administrator defined per-user limit on locked
pages ulimit -l.

Processes have a number of options to bound their work-
ing set. The simplest is to stop passing MSG_ZEROCOPY once
a working set size limit is reached. But this causes a per-
formance discontinuity that may be unacceptable for reliable
production services.

A process can also release its own reference on a page, de-
pending on how it allocated the page. An munmap call reduces
process working set size, if not total system memory utiliza-
tion. But in general, shared memory transmission will have
lower system memory pressure than copying. A process can
replace a shared page with a private copy by copying it into
another page and remapping that to the same virtual address
using mremap. This operation is not atomic, so care must be
taken in multi-threaded processes. But unlike munmap alone,
it can safely release hold on shared pages administered by a
userspace allocator like malloc.

A particular concern in long running production services is
avoiding unreasonable resource use at the tail by slow con-
nections. A close call releases all packets on the transmit
queue. It does not guarantee that all data has left the host,
however. A clone may be queued in the traffic shaping layer,
for instance. As a close call closes the entire socket including
its error queue, the process has lost the ability to receive com-
pletion notifications. Instead, a tcp socket can be purged with
connect AF_UNSPEC. This purges the transmit queue with-
out closing the error queue. While not advisable, such a dis-
connected socket can be reused with a subsequent connect.
The zerocopy counter is not reset in that case.

Notification Latency

Working set size is a function of both number of pages and
time that pages are outstanding. In the extreme case, if a
packet is sent to a local socket that is never read, latency is
unbounded. To avoid this case, shared pages are converted
to a private copy on all paths that loop back to local sockets.
On reaching the receive path in __netif_receive_skb_core,
skb_orphan_frags triggers an skb_copy_ubufs. The same
happens for packet sockets and the tun transmit queue.

Perceived working set size can be larger than true work-
ing set size if many fragments share a single ubuf_info. In
one experiment, 75 system calls ended up coalescing onto the
same ubuf_info. Notification latency for completion of the
first buffer was unreasonably long. Even though the kernel
had unpinned the memory, the process was unaware and thus
unable to reuse this memory. To avoid such degenerate cases,
the structure now counts the number of bytes that it repre-
sents. If this total exceeds a configured limit the append will
fail. The consequence of such a hard break is that data can-
not be appended to an existing packet where it would have
been if data were copied, so packetization on the wire differs.
The current limit was experimentally chosen to be 512KB,
though more data is needed to measure the rate of packetiza-
tion changes with limit and whether the limit can be increased
to reduce that effect.

process cycles
size copy zerocopy %
4K 27,609 11,217 41

16K 21,370 3,823 18
64K 20,557 2,312 11

256K 21,110 2,134 10
1M 20,987 1,610 8

system cycles
size copy zerocopy %
4K 49,217 39,175 79

16K 43,540 29,213 67
64K 42,189 26,910 64

256K 43,006 27,104 63
1M 42,759 25,931 61

Figure 3: Netperf throughput as a function of send buffer size

Experiments
A microbenchmark indicates how copy avoidance efficiency
depends on buffer size. Figure 3 shows cycles reported
by perf for a netperf process sending a single 10 Gbps
TCP_STREAM at increasingly large send sizes. Reported
is the median of at least 3 runs. Netperf is pinned to cpu 2,
network interrupts to cpu 3. RPS and RFS are disabled and
the kernel is booted with idle=halt.

The first column shows the buffer size. The next three
columns show Mcycles spent in the netperf process context
without and with MSG_ZEROCOPY and their ratio. The second
figure shows the same information, but now for systemwide
cycles on the two cpus that run the process and interrupt han-
dler (perf record -a -C A,B).

MSG_ZEROCOPY reduces cycle cost, with savings increasing
with buffer size. At 4KB, the call takes 41% of the copy-
based equivalent. At 1MB, it takes only 8%. For network
transmission, process cycles do not fully capture the over-
head. Systemwide, improvements are still significant, but
smaller, at 79% to 61% of the equivalent copy-based work-
load.

Perf record indicates the cause for these performance dif-
ferences. Figure 4 drills down into the 1M send buffer size
case. The copy based path spends 79% of its process cycles
copying data to the kernel. The variant with MSG_ZEROCOPY
has a lower absolute event count. The copy function is no-
tably absent. The top items in its place are functions for page
pinning and for inserting user frags into the skbuff.

The interface is currently being evaluated in production
workloads in machine learning and content delivery. Those
mature production systems perform many actions besides
copying, so savings are expected to be smaller. Even though
these production codebases are large and multi-layered, con-
version to this interface proved not too complex. Both ap-
plications already hold data in a user queue until it is sent.
Extending this period until the send notification is read was
the most complex change.

The machine learning application is a mixed workload on
a distributed version of the open source Tensorflow[2] ML
framework. This early distributed version ran over a pro-

copy:
Samples: 42K of event ’cycles’,
Event count (approx.): 21258597313
79.41% 33884 netperf [k] copy_user_generic_string
3.27% 1396 netperf [k] tcp_sendmsg
1.66% 694 netperf [k] get_page_from_freelist
0.79% 325 netperf [k] tcp_ack
0.43% 188 netperf [k] __alloc_skb

zerocopy:
Samples: 1K of event ’cycles’,
Event count (approx.): 1439509124
30.36% 584 netperf [k] gup_pte_range
14.63% 284 netperf [k] __zerocopy_sg_from_iter
8.03% 159 netperf [k] skb_zerocopy_add_frags_iter
4.84% 96 netperf [k] __alloc_skb
3.10% 60 netperf [k] kmem_cache_alloc_node

Figure 4: Perf report for netperf sending 1MB at a time

prietary RPC protocol. Overall reduction in wallclock time
depends greatly on workload. As expected, in particular on
buffer size. The BM_RPC benchmark regresses by 15% with
2B RPCs, improves by 23% on 98KB RPCs. The wallclock
time of a more typical real mixed workload was 7.5% shorter
with MSG_ZEROCOPY. Tensorflow now supports the opensource
gRPC [1] protocol for distributed operation. We are working
on porting MSG_ZEROCOPY to that.

A proprietary content delivery system on top of standard
HTTPS saw a 5% improvement in peak QPS. A generic re-
mote block device application, on the other hand, saw less
than 2%. This is unsurprising, once we factor in that that pro-
cess performs a hash function for integrity protection on all
data prior to send.

Summary
Copy avoidance replaces copying with shared memory. A
robust implementation relies on page pinning or even page
flipping, trading per byte overhead with per page overhead. It
is not a panacea, but when applied sensibly, can significantly
reduce cycle cost of large data serving applications.

The MSG_ZEROCOPY interface extends existing copy avoid-
ance in Linux to common sockets. It is implemented for TCP,
UDP, RAW and packet sockets for communication with re-
mote peers. It combines a simple system call flag with a com-
pletion notification channel over the socket error queue. The
implementation extends existing copy avoidance for virtual
machine networking with support for cloning and complex
bytestreams. Microbenchmarks show savings up to 92% of
process cycles and 39% of overall system cycles for a simple
netperf TCP benchmark. Early experiments with real work-
loads are in the 5-8% savings for lightly modified machine
learning and content delivery applications.

Thanks Thanks to Soheil Hassas Yeganeh and Grzegorz
Calkowski for their help in converting complex production
services to MSG_ZEROCOPY.

References
[1] grpc.io. Sourcecode at http://github.com/grpc/grpc.
[2] Martín Abadi, e. a. 2015. TensorFlow: Large-scale ma-

chine learning on heterogeneous systems. Software avail-
able from tensorflow.org.

[3] Torvalds, L. Explaining splice() and
tee(). LKML email thread, April 19th, 2006
(Re: Linux 2.6.17-rc2). Retrieved from
http://lkml.iu.edu/hypermail/linux/kernel/0604.2/0779.html.

[4] Tsirkin, M. S. tun zerocopy support. net-
dev email thread, July 20th, 2012. Retrieved from
https://lwn.net/Articles/507716/.

