

Netfilter updates: NetDev 2.1

<pablo@netfilter.org>
Pablo Neira Ayuso

What does this presentation cover?

● Not a tutorial... but incremental updates on Netfilter and
nf_tables.

● For those new to nftables:
● See http://people.netfilter.org/pablo/nft-tutorial.pdf
● https://wiki.nftables.org
● man nft(8)

● nf_tables replacement for {ip,ip6,eb,arp}_tables
● Heavy use of maps to reduces number of rule inspection
● nftables 0.7 (Dec 20th, 2016)

http://people.netfilter.org/pablo/nft-tutorial.pdf
https://wiki.nftables.org/

nf_tables performance numbers

● Dropping packets, with 4.11.0-rc+patch
● iptables from prerouting/raw:

– iptables -I PREROUTING -t raw -p udp –dport 9 -j DROP

6076928pps 2916Mb/sec

● nftables from ingress:
– nft add rule netdev ingress udp dport 9 drop

11855461pps 5690Mb/sec

● So nft was almost twice as fast as iptables! Cool!

New nf_tables extensions: fib

● Forward Internet Base (FIB) lookups
– Syntax: fib key data operator expression

– key: saddr, daddr, mark, iif, oif

tuple represented through concatenation, eg. saddr . iif

– data: oif, oifname, address type

oif: output interface index

oifname: output interface name

address type:
– unicast, local, broadcast, anycast, multicast, blackhole, unreachable,

prohibit

– operator: eq, neq, vmap, map

New nf_tables extensions: fib (2)

● Drop if reverse lookup fails (reverse path filter)
– nft add rule filter prerouting fib saddr . iif oif missing drop

● Drop if there is not destination route for this packet
– nft add rule filter prerouting fib daddr oif missing drop

● Drop packets to an address not configured on interface
– nft add rule filter prerouting \

fib daddr . iif type != { local, broadcast, multicast } drop

● Verdict map to perform action on address type:
– nft filter prerouting meta mark set 0xdead \

fib daddr . mark type vmap { \
blackhole : drop, prohibit : jump prohibited, unreachable : drop }

New nf_tables extensions: fib (3)

● Integrates well with existing infrastructure and
userspace, eg. Quagga
– Remotely triggered black hole (RTBH) through BGP

● drops unwanted traffic before entering protected network

● No ingress support yet
– … but it should be very easy to add.

New nf_tables extensions: rt

● Access packet routing metainformation
– Syntax: rt key operator expression

– key: classid, nexthop

nexthop: IPv4/IPv6 address

classid: routing realm
– Realm allows you to group routes via iproute2
– in /etc/iproute2/rt_realms

– operator: eq, neq, gt, lt, gte, lte, vmap, map

New nf_tables extensions: rt (2)

● Drop any traffic to 192.168.1.0/24 that is not routed via 192.168.0.1

nft add rule filter postrouting \
ip daddr 192.168.1.0/24 rt nexthop != 192.168.0.1 drop

● Count outgoing traffic per nexthop, times out after 10 minutes.

nft add rule filter postrouting \
flow table nh { rt nexthop timeout 600s counter }

● Dump content
– nft list flow table filter nh

table ip filter {

 flow table nh {
 type ipv4_addr
 elements = { 142.154.64.1: counter packets 1026 bytes 332076,
 24.19.12.1: counter packets 3405 bytes 212434 }

 }

}

New nf_tables extensions: notrack

● Explicitly disable connection tracking
– Syntax: notrack

● Needs to happen before the Connection Tracking
– Hint: Before priority -300

● Traffic going to tcp/80 skips conntrack

nft add table raw

nft add chain raw prerouting { \
type filter hook prerouting priority -300\; }

nft add rule raw prerouting tcp dport 80 notrack

New nf_tables extensions: quota

● Support for byte based quota
– Syntax: quota {over} value unit

– over: Optional, inverts matching criteria

– value

– unit: bytes, mbytes

● Enforce quota per flow

nft add rule raw prerouting \
flow table http { \
 ip saddr timeout 60s quota over 50 mbytes } drop

● Packet-based quota should be easy to add too...

Updated nf_tables extensions:
payload

● Update layer 4 checksum if field belongs to
pseudoheader, eg. saddr, daddr
– Syntax: ip {saddr,daddr} set expression

● Stateless NAT 1:1 for load balancing

nft add rule netdev filter ingress \
ip saddr set numgen inc mod 2 map { \

0 : 192.168.10.10, \
1 : 192.168.10.11 }

Netfilter logging

● Required minimal changes to reuse the generic nf_log infrastructure from
ingress.

● Print packet in human readable format to the kernel log buffer via pr_*()
folks.

● Log some packets reaching the last rule in the policy
– nft add rule netdev filter ingress \

limit rate 2/second log prefix \"packet drop \" drop

– packet drop IN=wlan0 OUT= MAC=b1:24:a0:c6:96:a8:00:10:18:f3:57:44:08:00
SRC=8.8.8.8 DST=172.20.1.180 LEN=84 TOS=0x00 PREC=0x00 TTL=55
ID=40364 PROTO=ICMP TYPE=0 CODE=0 ID=1414 SEQ=108

● New nf_log_all_netns sysctl.
– Enables logging for all existing netns.

● pernet syslog seems tricky and it's been discontinued...

Connection Tracking updates

● Two skbuff fields, on different cache lines:
– skb->nfctinfo, only 3 bits

● New, established, related + reply

– skb->nfct, pointer to conntrack object

● … solution:
– Rename skb->nfctinfo to skb->_ct
– Store skb->nfctinfo (3 bits) stored in skb->_ct
– Force mm to allocate objects aligned at 8 bytes for skb->_ct

● Remove timer per conntrack, use garbage collector
– Get rid of struct timer
– Add workqueue-based garbage collector
– Remove central spinlock in NAT byaddr hashtable via rhashtable rhlist

● Results: Better performance, half less CPU consumption!

Connection Tracking updates (2)

● On-demand hook per-namespace registration
nf_conntrack and defrag
– Avoid hook cost if not needed according to policy

● UDPlite merged into UDP
– Remove copy & paste code 8)

● SCTP is now built-in by default into conntrack
– Problems with generic connection tracker and missing

modprobe

– Complainins on breaking SCTP from SOHO Linux-based
routers

nf_tables named objects

● Provide replacement for iptables extended accounting infrastructure
(nfacct)
– Add named counters

nfacct add http-traffic

– Listing existing counters

nfacct list

– Atomic dump-and-reset

nfacc list reset

● From iptables:

iptables -A PREROUTING -t raw -p tcp –dport 80 \
-m nfacct –nfacct-name http-traffic

● Extended later on to support quotas by Linaro
– Including event notification on quota exceeded

nf_tables named objects (2)

● Reuse nfacct from nf_tables?
– Not easy to do

● No 2-commit phase protocol for atomic incremental
updates

● nfacct was grown code:
– Limited to counters, then quotas

– Other stateful objects such as limit rates?

● Scalability problems: one rule per counter

nf_tables named objects (3)

● New nf_tables infrastructure to accomodate named objects
– New NFT_MSG_{NEW,DEL,GET}OBJ commands
– nft_register_obj() and nft_unregister_obj()
– struct nft_object_type represents the object

● netlink interface and attributes
● eval function to access the object from the packet path

● Currently supported:
– Counter

– Quota

– Ratelimit? Not yet, easy to add.

nf_tables named objects (4)

● Add new named counter
nft add counter filter http-traffic

● Add new quota
nft add quota filter http-traffic 25 mbytes

● nft add rule filter output \
tcp dport https counter name http-traffic

● nft add rule filter output counter name tcp dport map { \
 443 : "https-traffic", \
 80 : "http-traffic", \
 22 : “ssh-traffic”, \
 25 : "smtp-traffic", \

 }

nf_tables named objects (5)

● Add map
nft add map filter badguys { \

 type ipv4_addr : counter \; }
● Reference it from rule

nft add rule filter input counter name \
 ip saddr map @badguys

● Add new counter objects to map

nft add counter filter badguy1
nft add counter filter badguy2
nft add element filter badguys { \

192.168.2.3 : "badguy1" }
nft add element filter badguys { \

192.168.2.4 : "badguy2" }

nf_tables named objects (6)

● List existing counters
nft list counters table filter

● List existing quota
nft list quotas

● Atomic dump and reset
nft reset counter filter http-traffic

 table ip filter {
 counter http-traffic {

 packets 3134 bytes 12684312
 }
 }

● Same for quotas:
nft list quota filter https-quota

 table ip filter {
 quota https-quota {
 25 mbytes used 2048 bytes
 }
 }

nf_tables ct helpers

● No automatic assignment of helpers anymore
– Read “Secure use of iptables and connection

tracking helpers”

● Helper lookup from packet path (now obsolete):
– Conntrack helpers enabled via modprobe

– look up for helper

– Attach it to conntrack object

● Now wxplicit helper configuration
– iptables -I PREROUTING -t raw -p tcp --dport 21 \

-j CT --helper ftp

nf_tables ct helpers (2)

● New ct helper named object, eg.
helper “sip-5060” { \
 type sip protocol ip l4proto udp\; }

● From rules:
nft add rule x y udp dport 5060 \
 ct helper set “sip-5060”

● One single rule using dictionary:
nft add rule x y ct helper set udp dport map { \

69 : “tftp-69”, \
 5060: “sip-5060” }

Migrating from iptables to nft

● Facilitate migration from iptables to nftables
– iptables-translate

– iptables-restore-translate

● 61 translations available (of 107 extension)
– Some missing kernel code to be mapped

– Some of them will not be translated: Obsolete

– Missing code in the kernel

– More details at wiki.nftables.org

● Test infrastructure available for translations

Migrating from iptables to nft (2)

● Let's make a quick demo...

nf_tables VM description

● Need a way to publicize to userspace a description of available
capabilities (to be implemented)

● nf_tables VM is behind the Netlink interface curtain
– Instructions available in the nf_tables VM

– Netlink command types

– Describe Netlink attributes in TLV format
● Attributes that you can use with this instruction
● Range of acceptable values for these attributes

● Why this?
– Generate more optimized bytecode that runs faster based on VM

capabilities

– Deprecate things we don't want anymore

nf_tables VM description (2)

● … This is also useful for hardware offloads too
– The bytecode must describe the rule in a simple

way

– No bytecode optimizations
● eg. skip payload merge

– meta l4proto special semantics
● Hardware should use ip6 nexthdr

● If driver gets out of sync with software
representation.

nf_tables VM description (2)

● New netlink NFT_MSG_GETVMDESC command
● Add nf_tables_desc.c file with descriptions
● Define structure that describes instruction

– Compile breakage macro if description is missing
● Developers don't forget to add these bits

● Transparent to the user
– Implemented by nft command line tool userspace

– Likely a new command to show VM capabilities for user reference in
human readable format

● eg. nft describe vm

– … and in json for robots

nf_tables sets

● Set backend representation depends on:
– Set implementation big O notation describes scalability in terms of performance

and memory
– estimated size in elements
– Other useful description information, eg. Interval

● Good to hides set backend details behind the curtain
– We can deprecate obsolete set representations

● Existing set backends.
– Hashtable, via rhashtable.

– Rbtree, for ranges. Replacement?

– Bitmap, for key lengths <= 16 bits.
● Several million packets faster than hashtable!

nf_tables sets (2)

● New description to represent subsets (not implemented):
– nft add set x y { type ipv4_addr; \

 range 192.168.0.1-192.168.0.255 }

● Implementation details:
– Add new flag NFT_SET_PARTIAL

– Meta information key needs to be network byte order for
memcmp()

– Basic bignum to substraction to calculate offset
● eg. 128 bits IPv6 address

● Thus we can select better representation, eg. bitmap

nf_tables sets (3)

● Catch-all element for maps:
– Default action on no element found, eg.

nft add rule filter prerouting \
ip saddr vmap { 1.2.3.4 : accept, \

 1.2.3.5 : accept, \
 * : drop }

● Add more optimized backend implementations
– Constant sets don't need a resizable hashtable...

– Worth a hashtable for 2 or 3 elements?
● Add very specialized silly sets, eg. List or array

nf_tables sets (4)

● Add set if it doesn't exist, do nothing if exists

nft add set x y { type ipv4_addr\; }

● Create command, bails out if set exists, eg.

nft create set x y { type ipv4_addr\; }
<cmdline>:1:1-35: Error: Could not process rule: File exists
create set x y { type ipv4_addr; }
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

● Flush set elements

nft flush set x y

● Inverted set lookups

nft add rule x y tcp dport != { 80, 443 } drop

nf_tables sets (5)

● People like names

nft add element filter badguys { evil-target.com, bad-guy.com }

● Problem: DNS names not realiable for policies
● Solution: Use variables

 define bad_guy_org = 1.2..3.4
 define evil_target_com = 4.3.2.1
 define bad_people = { $bad_guy_org, $evil_target_com }

● Include it from master policy file
 include “bad-guys.nft”
 add set filter bad-people { type ipv4_addr; }
 add element filter bad-people $bad_people

● Good points:
– Useful to improve ruleset maintainability

– Robots can autogenerate this

Rule deletion by description

● Just like in iptables, ie.

nft delete rule filter prerouting tcp dport 80 notrack

● So you don't need to:

nft list ruleset -a # list rules with unique handle number

nft delete rule filter prerouting handle 85

● Need to deal with anonymous sets,
● eg. Ip saddr { 1.2.3.4, 1.2.3.5, 1.2.3.6 }

– Sort elements and perform full comparison

– Look up for rule handle

● Feature ready, but patchset still incomplete in userspace
– Fix assymmetries between linearize and delinearize path

Improve error reporting

● # nft add rule filter prerouting udp dport 53 ip daddr 8.8.8.8 drop

<cmdline>:1:1-62: Error: Could not process rule: No such file or directory

add rule filter prerouting udp dport 53 ip daddr 8.8.8.8 drop

^^^
● Too sparse grain, better would be...
● # nft add rule filter prerouting udp dport 53 ip daddr 8.8.8.8 drop

<cmdline>:1:1-62: Error: Could not process rule: No such file or directory

add rule filter prerouting udp dport 53 ip daddr 8.8.8.8 drop

 ^^^^
● Got patches already to kernel to support this:

– Missing nfnetlink, libmnl and userspace code

Netfilter updates: NetDev 2.1
Questions?

<pablo@netfilter.org>
Pablo Neira Ayuso

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

