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What does this presentation cover?

● Not a tutorial... but incremental updates on Netfilter and 
nf_tables.

● For those new to nftables:
● See http://people.netfilter.org/pablo/nft-tutorial.pdf
● https://wiki.nftables.org
● man nft(8)

● nf_tables replacement for {ip,ip6,eb,arp}_tables
● Heavy use of maps to reduces number of rule inspection
● nftables 0.7 (Dec 20th, 2016)

http://people.netfilter.org/pablo/nft-tutorial.pdf
https://wiki.nftables.org/


  

nf_tables performance numbers

● Dropping packets, with 4.11.0-rc+patch
● iptables from prerouting/raw:

– iptables -I PREROUTING -t raw -p udp –dport 9 -j DROP

6076928pps 2916Mb/sec

● nftables from ingress:
– nft add rule netdev ingress udp dport 9 drop

11855461pps 5690Mb/sec 

● So nft was almost twice as fast as iptables! Cool!



  

New nf_tables extensions: fib

● Forward Internet Base (FIB) lookups
– Syntax: fib key data operator expression

– key: saddr, daddr, mark, iif, oif

tuple represented through concatenation, eg. saddr . iif

– data: oif, oifname, address type

oif: output interface index

oifname: output interface name

address type:
– unicast, local, broadcast, anycast, multicast, blackhole, unreachable, 

prohibit

– operator: eq, neq, vmap, map



  

New nf_tables extensions: fib (2)

● Drop if reverse lookup fails (reverse path filter)
– nft add rule filter prerouting fib saddr . iif oif missing drop

● Drop if there is not destination route for this packet
– nft add rule filter prerouting fib daddr oif missing drop

● Drop packets to an address not configured on interface
– nft add rule filter prerouting \

fib daddr . iif type != { local, broadcast, multicast } drop

● Verdict map to perform action on address type:
– nft filter prerouting meta mark set 0xdead \

fib daddr . mark type vmap { \
blackhole : drop, prohibit : jump prohibited, unreachable : drop }



  

New nf_tables extensions: fib (3)

● Integrates well with existing infrastructure and 
userspace, eg. Quagga
– Remotely triggered black hole (RTBH) through BGP

● drops unwanted traffic before entering protected network

● No ingress support yet
– … but it should be very easy to add.



  

New nf_tables extensions: rt

● Access packet routing metainformation
– Syntax: rt key operator expression

– key: classid, nexthop

nexthop: IPv4/IPv6 address

classid: routing realm
– Realm allows you to group routes via iproute2
– in /etc/iproute2/rt_realms

– operator: eq, neq, gt, lt, gte, lte, vmap, map



  

New nf_tables extensions: rt (2)

● Drop any traffic to 192.168.1.0/24 that is not routed via 192.168.0.1

nft add rule filter postrouting \
ip daddr 192.168.1.0/24 rt nexthop != 192.168.0.1 drop

● Count outgoing traffic per nexthop, times out after 10 minutes.

nft add rule filter postrouting \
flow table nh { rt nexthop timeout 600s counter }

● Dump content
– nft list flow table filter nh

table ip filter {

        flow table nh {
                type ipv4_addr
                elements = { 142.154.64.1: counter packets 1026 bytes 332076,
                                     24.19.12.1: counter packets 3405 bytes 212434 }

        }

}



New nf_tables extensions: notrack

● Explicitly disable connection tracking
– Syntax: notrack

● Needs to happen before the Connection Tracking
– Hint: Before priority -300

● Traffic going to tcp/80 skips conntrack

nft add table raw

nft add chain raw prerouting { \
type filter hook prerouting priority -300\; }

nft add rule raw prerouting tcp dport  80 notrack



New nf_tables extensions: quota

● Support for byte based quota
– Syntax: quota {over} value unit

– over: Optional, inverts matching criteria

– value

– unit: bytes, mbytes

● Enforce quota per flow

nft add rule raw prerouting \
flow table http { \
     ip saddr timeout 60s quota over 50 mbytes } drop

● Packet-based quota should be easy to add too...



Updated nf_tables extensions: 
payload

● Update layer 4 checksum if field belongs to 
pseudoheader, eg. saddr, daddr
– Syntax: ip {saddr,daddr} set expression

● Stateless NAT 1:1 for load balancing

nft add rule netdev filter ingress \
ip saddr set numgen inc mod 2 map { \

0 : 192.168.10.10, \
1 : 192.168.10.11 }



  

Netfilter logging

● Required minimal changes to reuse the generic nf_log infrastructure from 
ingress.

● Print packet in human readable format to the kernel log buffer via pr_*() 
folks.

● Log some packets reaching the last rule in the policy
– nft add rule netdev filter ingress \

limit rate 2/second log prefix \"packet drop \" drop

– packet drop IN=wlan0 OUT= MAC=b1:24:a0:c6:96:a8:00:10:18:f3:57:44:08:00 
SRC=8.8.8.8 DST=172.20.1.180 LEN=84 TOS=0x00 PREC=0x00 TTL=55 
ID=40364 PROTO=ICMP TYPE=0 CODE=0 ID=1414 SEQ=108 

● New nf_log_all_netns sysctl.
– Enables logging for all existing netns.

● pernet syslog seems tricky and it's been discontinued...



  

Connection Tracking updates

● Two skbuff fields, on different cache lines:
– skb->nfctinfo, only 3 bits

● New, established, related + reply

– skb->nfct, pointer to conntrack object

● … solution:
– Rename skb->nfctinfo to skb->_ct
– Store skb->nfctinfo (3 bits) stored in skb->_ct
– Force mm to allocate objects aligned at 8 bytes for skb->_ct

● Remove timer per conntrack, use garbage collector
– Get rid of struct timer
– Add workqueue-based garbage collector
– Remove central spinlock in NAT byaddr hashtable via rhashtable rhlist

● Results: Better performance, half less CPU consumption!



  

Connection Tracking updates (2)

● On-demand hook per-namespace registration 
nf_conntrack and defrag
– Avoid hook cost if not needed according to policy

● UDPlite merged into UDP
– Remove copy & paste code 8)

● SCTP is now built-in by default into conntrack
– Problems with generic connection tracker and missing 

modprobe

– Complainins on breaking SCTP from SOHO Linux-based 
routers



  

nf_tables named objects

● Provide replacement for iptables extended accounting infrastructure 
(nfacct)
– Add named counters

nfacct add http-traffic

– Listing existing counters

nfacct list

– Atomic dump-and-reset

nfacc list reset

● From iptables:

iptables -A PREROUTING -t raw -p tcp –dport 80 \
-m nfacct –nfacct-name http-traffic

● Extended later on to support quotas by Linaro
– Including event notification on quota exceeded



  

nf_tables named objects (2)

● Reuse nfacct from nf_tables?
– Not easy to do

● No 2-commit phase protocol for atomic incremental 
updates

● nfacct was grown code:
– Limited to counters, then quotas

– Other stateful objects such as limit rates?

● Scalability problems: one rule per counter



  

nf_tables named objects (3)

● New nf_tables infrastructure to accomodate named objects
– New NFT_MSG_{NEW,DEL,GET}OBJ commands
– nft_register_obj() and nft_unregister_obj()
– struct nft_object_type represents the object

● netlink interface and attributes
● eval function to access the object from the packet path

● Currently supported:
– Counter

– Quota

– Ratelimit? Not yet, easy to add.



  

nf_tables named objects (4)

● Add new named counter
nft add counter filter http-traffic

● Add new quota
nft add quota filter http-traffic 25 mbytes

● nft add rule filter output \
tcp dport https counter name http-traffic

● nft add rule filter output counter name tcp dport map { \
          443 : "https-traffic", \
          80 : "http-traffic", \
          22 : “ssh-traffic”, \
          25 : "smtp-traffic", \

  }



  

nf_tables named objects (5)

● Add map
nft add map filter badguys { \

     type ipv4_addr : counter \; }
● Reference it from rule

nft add rule filter input counter name \
             ip saddr map @badguys

● Add new counter objects to map

nft add counter filter badguy1
nft add counter filter badguy2
nft add element filter badguys { \

192.168.2.3 : "badguy1" }
nft add element filter badguys { \

192.168.2.4 : "badguy2" }



  

nf_tables named objects (6)

● List existing counters
nft list counters table filter

● List existing quota
nft list quotas

● Atomic dump and reset
nft reset counter filter http-traffic

    table ip filter {
    counter http-traffic {

              packets 3134 bytes 12684312
        }
    }

● Same for quotas:
nft list quota filter https-quota

    table ip filter {
         quota https-quota {
              25 mbytes used 2048 bytes
         }
    }



  

nf_tables ct helpers

● No automatic assignment of helpers anymore
– Read  “Secure use of iptables and connection 

tracking helpers” 

● Helper lookup from packet path (now obsolete):
– Conntrack helpers enabled via modprobe

– look up for helper

– Attach it to conntrack object

● Now wxplicit helper configuration
– iptables -I PREROUTING -t raw -p tcp --dport 21 \

-j CT --helper ftp



  

nf_tables ct helpers (2)

● New ct helper named object, eg.
helper “sip-5060” { \
 type sip protocol ip l4proto udp\; }

● From rules:
nft add rule x y udp dport 5060 \
     ct helper set “sip-5060”

● One single rule using dictionary:
nft add rule x y ct helper set udp dport map { \

69 : “tftp-69”, \
    5060: “sip-5060” }



  

Migrating from iptables to nft

● Facilitate migration from iptables to nftables
– iptables-translate

– iptables-restore-translate

● 61 translations available (of 107 extension)
– Some missing kernel code to be mapped

– Some of them will not be translated: Obsolete

– Missing code in the kernel

– More details at wiki.nftables.org

● Test infrastructure available for translations



  

Migrating from iptables to nft (2)

● Let's make a quick demo...



  

nf_tables VM description

● Need a way to publicize to userspace a description of available 
capabilities (to be implemented)

● nf_tables VM is behind the Netlink interface curtain
– Instructions available in the nf_tables VM

– Netlink command types

– Describe Netlink attributes in TLV format
● Attributes that you can use with this instruction
● Range of acceptable values for these attributes

● Why this?
– Generate more optimized bytecode that runs faster based on VM 

capabilities

– Deprecate things we don't want anymore



  

nf_tables VM description (2)

● … This is also useful for hardware offloads too
– The bytecode must describe the rule in a simple 

way

– No bytecode optimizations
● eg. skip payload merge

– meta l4proto special semantics
● Hardware should use ip6 nexthdr

● If driver gets out of sync with software 
representation.



  

nf_tables VM description (2)

● New netlink NFT_MSG_GETVMDESC command
● Add nf_tables_desc.c file with descriptions
● Define structure that describes instruction

– Compile breakage macro if description is missing
● Developers don't forget to add these bits

● Transparent to the user
– Implemented by nft command line tool userspace

– Likely a new command to show VM capabilities for user reference in 
human readable format

● eg. nft describe vm

– … and in json for robots



  

nf_tables sets

● Set backend representation depends on:
– Set implementation big O notation describes scalability in terms of performance 

and memory
– estimated size in elements
– Other useful description information, eg. Interval

● Good to hides set backend details behind the curtain
– We can deprecate obsolete set representations

● Existing set backends.
– Hashtable, via rhashtable. 

– Rbtree, for ranges. Replacement?

– Bitmap, for key lengths <= 16 bits.
● Several million packets faster than hashtable!



  

nf_tables sets (2)

● New description to represent subsets (not implemented):
– nft add set x y  { type ipv4_addr; \

   range 192.168.0.1-192.168.0.255 }

● Implementation details:
– Add new flag NFT_SET_PARTIAL

– Meta information key needs to be network byte order for 
memcmp()

– Basic bignum to substraction to calculate offset
● eg. 128 bits IPv6 address

● Thus we can select better representation, eg. bitmap



  

nf_tables sets (3)

● Catch-all element for maps:
– Default action on no element found, eg.

nft add rule filter prerouting \
ip saddr vmap { 1.2.3.4 : accept, \

                          1.2.3.5 : accept, \
                               * : drop }

● Add more optimized backend implementations
– Constant sets don't need a resizable hashtable...

– Worth a hashtable for 2 or 3 elements?
● Add very specialized silly sets, eg. List or array



  

nf_tables sets (4)

● Add set if it doesn't exist, do nothing if exists

nft add set x y { type ipv4_addr\; }

● Create command, bails out if set exists, eg.

nft create set x y { type ipv4_addr\; }
<cmdline>:1:1-35: Error: Could not process rule: File exists
create set x y { type ipv4_addr; }
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

● Flush set elements

nft flush set x y

● Inverted set lookups

nft add rule x y tcp dport != { 80, 443 } drop



  

nf_tables sets (5)

● People like names

nft add element filter badguys { evil-target.com, bad-guy.com }

● Problem: DNS names not realiable for policies
● Solution: Use variables

    define bad_guy_org = 1.2..3.4
    define evil_target_com = 4.3.2.1
    define bad_people = { $bad_guy_org, $evil_target_com }

● Include it from master policy file
    include “bad-guys.nft”
    add set filter bad-people { type ipv4_addr; }
    add element filter bad-people $bad_people

● Good points:
– Useful to improve ruleset maintainability

– Robots can autogenerate this



  

Rule deletion by description

● Just like in iptables, ie.

nft delete rule filter prerouting tcp dport 80 notrack

● So you don't need to:

nft list ruleset -a   # list rules with unique handle number

nft delete rule filter prerouting handle 85

● Need to deal with anonymous sets,
● eg. Ip saddr { 1.2.3.4, 1.2.3.5, 1.2.3.6 }

– Sort elements and perform full comparison

– Look up for rule handle

● Feature ready, but patchset still incomplete in userspace
– Fix assymmetries between linearize and delinearize path



  

Improve error reporting

● # nft add rule filter prerouting udp dport 53 ip daddr 8.8.8.8 drop

<cmdline>:1:1-62: Error: Could not process rule: No such file or directory

add rule filter prerouting udp dport 53 ip daddr 8.8.8.8 drop

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
● Too sparse grain, better would be...
● # nft add rule filter prerouting udp dport 53 ip daddr 8.8.8.8 drop

<cmdline>:1:1-62: Error: Could not process rule: No such file or directory

add rule filter prerouting udp dport 53 ip daddr 8.8.8.8 drop

              ^^^^
● Got patches already to kernel to support this:

– Missing nfnetlink, libmnl and userspace code



  

Netfilter updates: NetDev 2.1
Questions?

<pablo@netfilter.org>
Pablo Neira Ayuso
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